Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(9): 4778-87, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27096602

RESUMO

Quaternary ammonium cationic polymers, such as poly(diallyldimethylammonium chloride) (polyDADMAC) and epichlorohydrin-dimethylamine (Epi-DMA), are commonly used by water utilities to enhance removal of particles and dissolved organic matter (DOM) from raw waters. Unfortunately, chloramination of waters treated with quaternary ammonium polymers leads to the formation of carcinogenic N-nitrosodimethylamine (NDMA). In this study, two approaches were developed to modify polyDADMAC and Epi-DMA to inhibit N-nitrosamine formation. The first approach involved treatment of polymers with methyl iodide (MeI), an alkylating agent, to convert polymer-bound tertiary amine groups to less chloramine-reactive quaternary ammonium groups. The second approach involved synthesis of polymers bearing less chloramine-reactive quaternary ammonium groups with dipropylamino (DPA) substituents. Treatment with MeI reduced NDMA formation from polymers by ∼75%, while synthesis of DPA-based polymers eliminated NDMA formation and formed N-nitrosodipropylamine, which is 10-fold less carcinogenic than NDMA, at 20-fold lower yields. Bench-scale jar tests demonstrated that both MeI-treated and DPA-based polymers achieved similar removal of particles and DOM as the original polyDADMAC and Epi-DMA at both low and high doses, but formed significantly less N-nitrosamines. This work demonstrates two approaches for modifying quaternary ammonium cationic polymers, which may enable water utilities to meet potential future regulations on N-nitrosamines while maintaining polymer usage to meet existing regulations.


Assuntos
Compostos de Amônio , Purificação da Água , Dimetilnitrosamina/química , Nitrosaminas/química , Polímeros/química
2.
Environ Sci Technol ; 48(22): 13392-401, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25322258

RESUMO

Quaternary ammonium cationic polymers, such as poly(diallyldimethylammonium chloride) (polyDADMAC) are widely used for coagulating and removing negatively charged particles and dissolved organic matter (DOM) from drinking water. Their use, however, has been linked to the formation of carcinogenic N-nitrosamines as byproducts during chloramine-based drinking water disinfection. In this study, a novel quaternary phosphonium cationic polymer, poly(diallyldiethylphosphonium chloride) (polyDADEPC), was synthesized such that the quaternary nitrogen atom of polyDADMAC was substituted with a phosphorus atom. Formation potential tests revealed that even under strong nitrosation conditions, polyDADEPC and related lower-order P-based compounds formed oxygenated and not nitrosated products. Bench-scale jar tests using three different source waters further demonstrated that polyDADEPC achieved coagulation performance comparable to commercial polyDADMACs for particle and DOM removals within the typical dose range used for drinking water treatment. This work highlights the potential use of a phosphonium coagulant polymer, polyDADEPC, as a viable alternative to polyDADMAC to avoid nitrosated byproduct formation during chloramination.


Assuntos
Nitrosaminas/análise , Compostos Organofosforados/síntese química , Polímeros/síntese química , Compostos Alílicos/química , Compostos de Amônio/química , Cloraminas/análise , Desinfecção , Floculação , Nitrosação , Compostos Organofosforados/química , Polímeros/química , Compostos de Amônio Quaternário/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA