Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(3): 572-585, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37578875

RESUMO

Microcystins with leucine arginine (MC-LR) is a virulent hepatotoxin, which is commonly present in polluted water with its demethylated derivatives [Dha7] MC-LR. This study reported a low-cost molecularly imprinted polymer network-based electrochemical sensor for detecting MC-LR. The sensor was based on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs), graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The molecularly imprinted polymer was engineered by quantum chemical computation utilizing p-aminothiophenol (p-ATP) and methacrylic acid (MAA) as dual functional monomers and L-arginine as a segment template. The electrochemical reaction mechanism of MC-LR on the sensor was studied for the first time, which is an irreversible electrochemical oxidation reaction involving an electron and two protons, and is controlled by a mixed adsorption-diffusion mechanism. The sensor exhibited a great detection response to MC-LR in the linear range of 0.08-2 µg/L, and the limit of detection (LOD) is 0.0027 µg/L (S/N = 3). In addition, the recoveries of the total amount of MC-LR and [Dha7] MC-LR in the actual sample by the obtained sensor were in the range from 91.4 to 116.7%, which indicated its great potential for environmental detection.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Impressão Molecular , Nanotubos de Carbono , Pontos Quânticos , Ouro/química , Microcistinas , Polímeros Molecularmente Impressos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Impressão Molecular/métodos
2.
Int J Biol Macromol ; 266(Pt 2): 131243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554917

RESUMO

With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.


Assuntos
Catecóis , Celulose , Celulose/química , Catecóis/química , Hidrogéis/química , Adesivos/química , Têxteis , Animais , Materiais Biomiméticos/química
3.
Bioresour Technol ; 336: 125312, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34044243

RESUMO

Herein, ten types of lactic acid-based deep eutectic solvents (DESs) with differently structured hydrogen bond acceptors (HBAs) were used for corn stover pretreatment. Among the tested DESs, those composed of HBAs with short alkyl chain were more effective to remove lignin and xylan, resulting in higher enzymatic digestion of the pretreated solids than their counterparts with long alky chain. Also, functional groups of HBAs demonstrated significant effects on biomass deconstruction. In order to interpret the different pretreatment performance of the tested DESs, Kamlet-Taft solvent polarity parameters of the tested DESs were correlated to their lignocellulose pretreatment performance. It was found that hydrogen bond acidity (Kamlet-Taft α parameter) had strong positive relationships with pretreatment efficacy of the studied DESs. These findings not only clarified the structure-property-performance relationships of the DESs, but also provided novel insights into design and selection of DESs for lignocellulose pretreatment.


Assuntos
Ácido Láctico , Zea mays , Biomassa , Ligação de Hidrogênio , Lignina , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA