Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 210: 112939, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35157917

RESUMO

The research on transportation of river microplastics (MPs) mainly focuses on the estimations of the total contents of river MPs entering the ocean, while the related transportation processes and influence factors were still largely unknown. In our study, the role of mangrove forest, a special tropical ecosystem in the estuary, on the transportations of MPs from rivers to ocean was explored. Except for the ND river with the absence of mangrove forest, the MPs collected from the water sample of the river upstream were much higher than their corresponding downstream (p < 0.05), with the interception rate of riverine MPs by mangrove forests ranging from 12.86% to 56% in dry season and 10.57%-42% in rainy season. The MPs with the characteristics of high density, larger size and regular shape were more easily intercepted. Furthermore, the combined effects of ecological indicators, the properties of mangrove and the hydrodynamic factors jointly determined the interception rates of MPs. This study provides a new perspective and data support for quantifying mangrove forests intercepting MPs in rivers as a factor of MPs retention in global rivers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Water Res ; 249: 120995, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071907

RESUMO

Myriad inherent and variable environmental features are controlling the assembly and succession of bacterial communities colonizing on mangrove microplastics (MPs). However, the mechanisms governing mangrove MPs-associated bacterial responses to environmental changes still remain unknown. Here, we assessed the dissimilarities of MPs-associated bacterial composition, diversity and functionality as well as quantified the niche variations of each taxon on plastispheres along river-mangrove-ocean and mangrove landward-to-seaward gradients in the Beibu Gulf, China, respectively. The bacterial richness and diversity as well as the niche breadth on mangrove sedimentary MPs dramatically decreased from landward to seaward regions. Characterizing the niche variations linked the difference of ecological drivers of MPs-associated bacterial populations and functions between river-mangrove-ocean (microplastic properties) and mangrove landward-to-seaward plastispheres (sediment physicochemical properties) to the trade-offs between selective stress exerted by inherent plastic substrates and microbial competitive stress imposed by environmental conditions. Notably, Rhodococcus erythropolis was predicted to be the generalist species and closely associated to biogeochemical cycles of mangrove plastispheres. Our work provides a reliable pathway for tackling the hidden mechanisms of environmental factors driving MPs-associated microbe from perspectives of niches and highlights the spatial dynamic variations of mangrove MPs-associated bacteria.


Assuntos
Microplásticos , Áreas Alagadas , Plásticos , Bactérias , China
3.
Sci Total Environ ; 899: 165611, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478953

RESUMO

Mangrove sediment is acknowledged as the critical sink of microplastics (MPs). However, the potential effect of mangrove root systems on the MPs migration in sediment remains largely unknown. Here, our study characterized the spatial distribution of MPs trapped in root hair, rhizosphere, and non-rhizosphere zones, and analyzed their correlations with physicochemical properties of sediments. The significantly increased MPs abundances toward root systems shed light on the distinct effect on the migration of MPs exerted by mangrove root systems. Partial least squares path modeling (PLS-PM) analysis revealed that pore water content and pH influenced the abundances of different MP characteristics (shape, color, size, and type) and further promoted the accumulation of MPs toward the root systems. In different mangrove areas from landward to seaward, other sediment properties (median grain size, clay content, and salinity) also controlled MP distribution. Additionally, smaller-sized MPs (<1000 µm) were more easily transported to the root systems. Our study emphasizes the importance of considering root systems effect when investigating the mechanisms of MPs distribution and migration in mangrove sediments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
4.
J Hazard Mater ; 459: 132137, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499500

RESUMO

Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Environ Pollut ; 312: 120093, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064060

RESUMO

Mulch film (MF) residues is an important source of microplastics (MPs) in farmland, but its transportation risk to the wider environment was still unknown. Some researches have pursued the sources of MPs found in exorheic rivers. Even so, a systematic study depicting the occurrence, source and fate of microplastics derived from mulch films (MPMF), the crucial component of MPs in farmlands, in exorheic rivers still lacking. Here, the combination of UV-Vis Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) was used to identify the full-size MPMF (1-5000 µm) in field sediment samples collected by single-diagonal systematic sampling. This study verified that MPMF, a polyethylene-matrix composite doped with additives, contributed a considerable part of MPs detected in upstream farmland soil and riverine sediments, and even had an abundance of 38 ± 11 items/kg to 82 ± 15 items/kg, accounting for 9.0%-13.7% of the total MPs in estuary sediments. Notably, upstream farmland was identified to the main source of the riverine MPMF by partial least square path modeling (PLS-PM), contributing to 94.7% of MPMF in riverside sediments and 85.0% of MPMF in estuary sediments. Our study first demonstrates that MPMF constitutes a non-negligible component of MPs in estuarine sediments and underlines the urgency of strengthening the management of MPs pollution in drainage areas with a high agricultural intensity.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Plásticos , Polietileno/análise , Solo , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 842: 156950, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753475

RESUMO

Tyre wear generates not only large pieces of microplastics but also airborne particle emissions, which have attracted considerable attention due to their adverse impacts on the environment, human health, and the water system. However, the study on tyre wear is scarce in real-world driving conditions. In the present study, the left-front and left-rear tyre wear in terms of volume lost in mm3 of 76 taxi cars was measured about every three months. This study covered 22 months from September 2019 to June 2021 and included more than 500 measurements in total. Some of the data was used to evaluate the effects of vehicle type and tyre type on tyre wear. In addition, a machine learning method (i.e., Extreme gradient boosting (XGBoost)) was used to probe the effect of driving behaviour on tyre wear by monitoring real-time driving behaviour. The current statistical results showed that, on average, the tyre wear was 72 mg veh-1 km-1 for a hybrid car and 53 mg veh-1 km-1 for a conventional internal combustion engine car. The average tyre wear measured for a taxi vehicle configuration featuring winter tyres was 160 mg veh-1 km-1, which was 1.4 and 3.0 times as much as those with all-season tyres and summer tyres, respectively. The wear rate of left-front tyres was 1.7 times higher than that of left-rear tyres. The XGBoost results indicated that compared to driving behaviour, tyre type and tyre position had more important effects on tyre wear. Among driving behaviours, braking and accelerating events presented the most considerable impact on tyre wear, followed by cornering manoeuvres and driving speed. Thus, it seems that limiting harsh braking and acceleration has the potential to reduce tyre wear significantly.


Assuntos
Condução de Veículo , Plásticos , Automóveis , Humanos , Microplásticos , Estações do Ano , Emissões de Veículos/análise
7.
Chemosphere ; 307(Pt 4): 136137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36007748

RESUMO

Microplastics (MPs) in ocean tides can be effectively intercepted by mangroves, especially sediments, which are considered to be effective sinks. However, the retention of plantation mangrove forests on MPs is still unclear. In this study, the spatial distribution and its implication factors of MPs in surface sediments of plantation mangrove forests were investigated for the first time. In plantation forests, MPs were detected with abundances ranging from 67 ± 21 to 203 ± 25 items/kg, and plantation forests were significantly lower than natural forests at the CJ sampling site (p < 0.05). Plantation forests had fewer fibrous MPs than natural forests (p < 0.05). Furthermore, the MPs abundance showed strong linear relationships with the sand content (p = 0.002, R2 = 0.86) and Aegiceras corniculata biomass (p = 0.001, R2 = 0.84). Partial least squares path modeling analysis (PLS-PM) indicated that these two factors influenced MPs abundance by retaining MPs with fibrous, fragmented, denser and larger-sized characteristics. Our results revealed the differences in MPs abundance and characteristics between plantation and natural mangrove forests, and it is necessary to monitor MPs pollution to provide significant guidance for the restoration of constructed wetlands.


Assuntos
Microplásticos , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Florestas , Sedimentos Geológicos , Plásticos , Areia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA