Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Wound J ; 21(4): e14597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124467

RESUMO

Macrophages play a crucial role in aiding all phases of the wound-healing process and has garnered increasing attention recently. Although a substantial body of related studies has been published, there remains a lack of comprehensive bibliometric analysis. In this study, we collected 4296 papers from the Web of Science Core Collection database. Three tools including CiteSpace, VOSviewer and one online analytical platform were employed to conduct bibliometric analysis and data visualization. Our results revealed that the annual number of publications related to macrophage and wound healing has increased exponentially with the year. The United States and China stand as the primary driving forces within this field, collectively constituting 58.2% of the total publication output. The application of biomaterials was one of the most concerned research areas in this field. According to references analysis, the current research focus has shifted to diabetic wound healing and regulating macrophage polarization. Based on the keywords analysis, we identified the following research frontiers in the future: exosomes and other extracellular vesicles; bio-derived materials and drug delivery methods such as nanoparticles, scaffolds and hydrogels; immunomodulation and macrophage polarization in the M2-state; chronic wounds, particularly those associated with diabetes; antimicrobial peptides; and antioxidant. Additionally, TNF, IL-6, IL-10, TGF-ß1 and VEGF ranked as the five genes that have garnered the most research attention in the intersection of macrophage and wound healing. All in all, our findings offered researchers a holistic view of the ongoing progress in the field of macrophages and wound healing, serving as a valuable reference for scholars and policymakers in this domain.


Assuntos
Antioxidantes , Macrófagos , Humanos , Bibliometria , Materiais Biocompatíveis , China
2.
Anal Bioanal Chem ; 411(10): 1989-2000, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798339

RESUMO

Ligand fishing is a widely used approach for screening active compounds from natural products. Recently, cell membrane (CM) as affinity ligand has been applied in ligand fishing, including cell membrane chromatography (CMC) and CM-coated magnetic bead. However, these methods possess many weaknesses, including complicated preparation processes and time-consuming operation. In this study, cheap and easily available cellulose filter paper (CFP) was selected as carrier of CM and used to fabricate a novel CM-coated CFP (CMCFP) for the first time. The type of CFP was optimized according to the amount of immobilized protein, and the immobilization of CM onto CFP by the insertion and self-fusion process was verified by confocal imaging. The CMCFP exhibited good selectivity and stability and was used for fishing potentially active compounds from extracts of Angelica dahurica. Three potentially active compounds, including bergapten, pabulenol, and imperatorin, were fished out and identified. The traditional Chinese medicine systems pharmacology database and analysis platform was used to build an active compound-target protein network, and accordingly, the gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1) was deduced as potential target of CM for the active compounds of Angelica dahurica. Molecular docking was performed to evaluate the interaction between active compounds and GABRA1, and bergapten was speculated as a new potentially active compound. Compared with other methods, the fishing assay based on CMCFP was more effective, simpler, and cheaper.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Celulose/química , Descoberta de Drogas/instrumentação , Membrana Eritrocítica/metabolismo , Filtração/instrumentação , Angelica/química , Animais , Produtos Biológicos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Papel , Coelhos , Receptores de GABA-A/metabolismo
3.
Neuroimage ; 122: 158-65, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26275385

RESUMO

Cortisol awakening response (CAR) is the cortisol secretory activity in the first 30-60 min immediately after awakening in the morning. Alterations in CAR as a trait have been associated with changes in the brain structure and function. CAR also fluctuates over days. Little, however, is known about the relationship between CAR as a state and brain activity. Using resting-state functional magnetic resonance imaging (fMRI), we investigated whether the CAR predicts intrinsic functional connectivity (FC) of the brain in the afternoon of the same day. Data from forty-nine healthy participants were analyzed. Salivary cortisol levels were assessed immediately after awakening and 15, 30 and 60 min after awakening, and resting-state fMRI data were obtained in the afternoon. Global FC strength (FCS) of each voxel was computed to provide a whole-brain characterization of intrinsic functional architecture. Correlation analysis was used to examine whether CAR predicts the intrinsic FC of core brain networks. We observed that the CAR was positively correlated with the FCS of the medial prefrontal cortex (mPFC). Further analysis revealed that higher CAR predicted stronger positive mPFC connectivity with regions in the default mode network. Our findings suggest that the HPA activity after awakening in the early morning may predict intrinsic functional connectivity of mPFC at rest in the afternoon of the same day.


Assuntos
Hidrocortisona/metabolismo , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Saliva/química , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA