Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 614(7948): 456-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792740

RESUMO

Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.


Assuntos
Eletromiografia , Eletrônica Médica , Nanoestruturas , Maleabilidade , Polímeros , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Humanos , Nanoestruturas/química , Polímeros/química , Pele , Monitorização Fisiológica , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletromiografia/instrumentação
2.
Nature ; 624(7991): 295-302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092907

RESUMO

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Assuntos
Eletrofisiologia , Polímeros , Água , Animais , alfa-Ciclodextrinas/química , Eletrodos , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Eletrofisiologia/tendências , Coração , Músculos , Polietilenoglicóis/química , Polímeros/química , Seda/química , Aranhas , Água/química , Hidrogéis/química , Eletrônica/instrumentação , Eletrônica/métodos , Eletrônica/tendências
3.
Small ; 18(19): e2200533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35388964

RESUMO

The demand for stretchable electronics with a broader working range is increasing for wide application in wearable sensors and e-skin. However, stretchable conductors based on soft elastomers always exhibit low working range due to the inhomogeneous breakage of the conductive network when stretched. Here, a highly stretchable and self-healable conductor is reported by adopting polyrotaxane and disulfide bonds into the binding layer. The binding layer (PR-SS) builds the bridge between polymer substrates (PU-SS) and silver nanowires (AgNWs). The incorporation of sliding molecules endows the stretchable conductor with a long sensing range (190%) due to the energy dissipation derived from the sliding nature of polyrotaxanes, which is two times higher than the working range (93%) of conductors based on AP-SS without polyrotaxanes. Furthermore, the mechanism of sliding effect for the polyrotaxanes in the elastomers is investigated by SEM for morphological change of AgNWs, in situ small-angle x-ray scattering, as well as stress relaxation experiments. Finally, human-body-related sensing tests and a self-correction system in fitness are designed and demonstrated.


Assuntos
Ciclodextrinas , Rotaxanos , Elastômeros/química , Condutividade Elétrica , Humanos , Polímeros/química
4.
Plant Cell Physiol ; 56(7): 1429-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907569

RESUMO

Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica.


Assuntos
Aclimatação/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Parede Celular/genética , Parede Celular/metabolismo , Dessecação , Ontologia Genética , Lignina/metabolismo , Magnoliopsida/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água/metabolismo , Privação de Água
5.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38641433

RESUMO

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Assuntos
Catéteres , Materiais Revestidos Biocompatíveis , Heparina , Polifenóis , Taninos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Catéteres/microbiologia , Polifenóis/química , Polifenóis/farmacologia , Heparina/química , Heparina/farmacologia , Taninos/química , Taninos/farmacologia , Silanos/química , Silanos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Propilaminas/química , Aminas/química , Aminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polilisina/química , Polilisina/farmacologia , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Elastômeros de Silicone/química , Adsorção , Escherichia coli/efeitos dos fármacos
6.
Int J Pharm ; 661: 124474, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019297

RESUMO

The aim of this study was to rapidly develop a sufficiently robust andrographolide nanosuspension (AG-NS) system using hummer acoustic resonance (HAR) technology. The system can effectively improve the dissolution properties of AG, while having high stability and scale-up adaptability. The formulation of AG-NS was optimized in a high-throughput manner using HAR technology and the preparation process was optimized stepwise. Optimal AG-NS with Z-Ave = 223.99 ± 3.16 nm, PDI=0.095 ± 0.007 and zeta potential = -33.20 ± 0.58 mV was successfully prepared with Polyvinylpyrrolidone K30 and Sodium dodecyl sulfate. The optimal prescription was successfully scaled up 100 and 150 times using HAR technology, which was the initial exploration of its commercial scale production. AG-NS was solidified using freeze drying and fluid bed technology, respectively. The optimal AG-NS and its solidified products were exhaustively characterized using various analytical techniques. The high energy input of HAR technology and drying process converted part of the drug into the amorphous state. The in-vitro drug dissolution studies demonstrated relatively higher drug dissolution for AG-NS and its solidified products compared to controls at both the dissolution media (pH 1.2 buffer and pH 6.8 buffer). AG-NS and its solidified products successfully maintained their physical stability in short-term stability and accelerated stability experiments, respectively.


Assuntos
Diterpenos , Liberação Controlada de Fármacos , Nanopartículas , Suspensões , Diterpenos/química , Nanopartículas/química , Estabilidade de Medicamentos , Liofilização , Solubilidade , Povidona/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Acústica , Tamanho da Partícula , Química Farmacêutica/métodos , Dodecilsulfato de Sódio/química
7.
Eur J Med Chem ; 265: 116078, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141286

RESUMO

In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 µM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Fosfatos de Inositol , Humanos , Células Hep G2 , Lipossomos , Linhagem Celular Tumoral , Irídio/farmacologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fenantrolinas/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Apoptose , Espécies Reativas de Oxigênio/metabolismo
8.
Adv Mater ; 36(31): e2403551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837826

RESUMO

Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.


Assuntos
Polietilenoglicóis , Água , alfa-Ciclodextrinas , alfa-Ciclodextrinas/química , Polietilenoglicóis/química , Água/química , Humanos , Animais , Cicatrização/efeitos dos fármacos , Pele , Técnicas de Fechamento de Ferimentos
9.
Infect Med (Beijing) ; 3(2): 100114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974346

RESUMO

Background: Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by a variety of enteroviruses (EVs). To explore the epidemiological characteristics and etiology of HFMD in Zhengzhou, China, we conducted a systematic analysis of HFMD surveillance data from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Methods: Surveillance data were collected from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Cases were analyzed according to the time of onset, type of diagnosis, characteristics, viral serotype, and epidemiological trends. Results: We found that the primary causative agent responsible for the HFMD outbreaks in Zhengzhou was Enterovirus A71 (EVA-71) (48.56%) before 2014. After 2015, other EVs gradually became the dominant strains (57.68%). The data revealed that the HFMD epidemics in Zhengzhou displayed marked seasonality, with major peaks occurring from April to June, followed by secondary peaks from October to November, except in 2020. Both the severity and case-fatality ratio of HFMD decreased following the COVID-19 pandemic (severity ‰: 13.46 vs. 0.17; case-fatality ‰: 0.21 vs. 0, respectively). Most severe cases were observed in patients aged 1 year and below, accounting for 45.81%. Conclusions: Overall, the incidence rate of HFMD decreased in Zhengzhou following the introduction of the EVA-71 vaccine in 2016. However, it is crucial to acknowledge that HFMD prevalence continues to exhibit a distinct seasonal pattern and periodicity, and the occurrence of other EV infections poses a new challenge for children's health.

10.
Colloids Surf B Biointerfaces ; 221: 112982, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347184

RESUMO

The development of wound dressings with antibacterial activities and simultaneous pro-healing functions are always urgent in treating bacterial wound infection. Herein, a novel multifunctional self-healing hydrogel was designed and prepared by crosslinking quaternary ammonium/boronic acid modified poly(aspartic acid) and poly (vinyl alcohol) polymers with targeted peptide MP196- conjugated polydopamine. The formation of this hydrogel not only improves the biocompatibility of quaternary poly(aspartic acid), but also enhances antibacterial efficacy by pH-triggering dissociation under the low pH bacterial microenvironment. Moreover, precise photothermal treatment can be achieved. In vitro study suggested high synergistic antibacterial efficiency(∼100 %) under near-infrared light, significantly higher than a single antibacterial strategy (66.0-82.6 %). In vivo study suggested infected wounds treated with the hydrogel showed an optimal healing rate(92.0 %) after 7 days. The survival rate of the bacteria in the epidermal tissues was reduced to 2.3 %. Besides, the suitable self-healing property of this hydrogel facilitated its application in the diversity of wound shapes. Thus, the novel poly(aspartic acid) hydrogel might be a promising candidate for precise therapy of bacteria-infected wounds.


Assuntos
Infecções Bacterianas , Infecção dos Ferimentos , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Ácido Aspártico/farmacologia , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/química , Álcool de Polivinil
11.
J Inorg Biochem ; 241: 112134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706490

RESUMO

In this study, two new iridium(III) polypyridyl complexes [Ir(bzq)2(DIPH)](PF6) (bzq = deprotonated benzo[h]quinoline, DIPH = 4-(2,5-dibromo-4-(1H-imidazo[4,5-f][1,10]phenanthrolim-2-yl)-4-hydroxybutan-2-one) (Ir1) and [Ir(piq)2(DIPH)](PF6) (piq = deprotonated 1-phenylisoquinoline) (Ir2) were synthesized and characterized by elemental analysis, HRMS, 1H and 13C NMR. The cytotoxic activity of Ir1, Ir2, Ir1lipo and Ir2lipo against cancer cells SGC-7901, HepG2, A549, HeLa, B16 and normal NIH3T3 cells in vitro was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir1 and Ir2 showed no cytotoxic activity, but their liposome-entrapped Ir1 (Ir1lipo) and Ir2 (Ir2lipo) showed significant cellular activity, especially sensitive to SGC-7901 with IC50 values of 4.7 ± 0.2 and 12.4 ± 0.5 µM, respectively. The cellular uptake, endoplasmic reticulum (ER) localization, autophagy, tubulin polymerization, glutathione (GSH), malondialdehyde (MDA) and release of cytochrome c were investigated to explore the mechanisms of apoptosis. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were also explored. Western blotting showed that Ir1lipo and Ir2lipo inhibited PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), p-AKT and activated Bcl-2 (B-cell lymphoma-2) protein and apoptosis-regulated factor caspase 3 (cysteinyl aspartate specific proteinase-3) and cleaving PARP (poly ADP-ribose polymerase). The results demonstrated that Ir1lipo and Ir2lipo induce cell apoptosis through targeting the endoplasmic reticulum (ER), cause oxidative stress damage, inhibiting PI3K/AKT signaling pathway, immunogenic cell death (ICD) and inhibit the cell growth at G2/M phase.


Assuntos
Antineoplásicos , Complexos de Coordenação , Camundongos , Animais , Humanos , Linhagem Celular Tumoral , Lipossomos/farmacologia , Irídio/química , Proteínas Proto-Oncogênicas c-akt , Complexos de Coordenação/química , Células NIH 3T3 , Fosfatidilinositol 3-Quinases , Proliferação de Células , Antineoplásicos/farmacologia , Apoptose
12.
Environ Sci Pollut Res Int ; 30(25): 67290-67302, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37103698

RESUMO

Nitrogen-rich organic polymer poly(chloride triazole) (PCTs) was synthesized by a one-step method as metal-halogen-free heterogeneous catalyst for the solvent-free CO2 cycloaddition. PCTs had abundant nitrogen sites and hydrogen bond donors, exhibited great activity for the cycloaddition of CO2 and epichlorohydrin, and achieved 99.6% yield of chloropropene carbonate under the conditions of 110 ℃, 6 h, and 0.5 MPa CO2. The activation of epoxides and CO2 by hydrogen bond donor and nitrogen sites was further explained by density functional theory (DFT) calculations. In summary, this study showed that nitrogen-rich organic polymer is a versatile platform for CO2 cycloaddition, and this paper provides a reference for the design of CO2 cycloaddition catalysts.


Assuntos
Dióxido de Carbono , Nitrogênio , Polímeros , Dióxido de Carbono/química , Catálise , Reação de Cicloadição , Compostos de Epóxi/química , Polímeros/química
13.
Eur J Med Chem ; 257: 115541, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295162

RESUMO

Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 µM), Ru2lipo (IC50 3.5 ± 0.1 µM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Rutênio/farmacologia , Lipossomos , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Fenantrolinas/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral
14.
Gene ; 817: 146201, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35063574

RESUMO

Lhx8, belonging to the LIM-Homebox family, is involved in the tooth, nervous system, and primordial follicles development in mammals. However, little is known about the regulatory roles of lhx8 in teleosts. In this study, two lhx8 duplicates were identified in Paralichthys olivaceus, termed Polhx8a and Polhx8b, respectively. Bioinformatic analysis showed that Polhx8a was more likely to be a teleost-specific paralog. According to expression analysis, Polhx8a transcripts were almost exclusively concentrated in the oocytes, while Polhx8b was weakly expressed in the spleen, gill, and some facial organs, indicating sub-functionalization of this gene pair during evolution. Furthermore, Polhx8a mRNA level elevated from perinucleolar oocyte (PNO) stage to vitellogenic oocyte (VO) stage transition and changed after exogenous hormone stimulation, proving that Polhx8a was involved in the oocyte development and could be regulated by sex hormones. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) experiments captured the positive protein interactions between PoLhx8a and the other two oocyte-specific transcription factors: PoFigla and PoNobox. After knocking down lhx8a in embryos or adult ovaries in vivo, the expression of oocyte-associated genes was significantly down-regulated (P < 0.05). Our findings suggest the evolution and functional differentiation of lhx8 genes, and shed light on the potential role of lhx8a in protein interactions and gene regulation in teleosts.


Assuntos
Proteínas de Peixes/genética , Linguado/genética , Proteínas com Homeodomínio LIM/genética , Animais , Evolução Molecular , Feminino , Proteínas de Peixes/fisiologia , Linguado/fisiologia , Técnicas de Silenciamento de Genes/veterinária , Células HeLa , Humanos , Proteínas com Homeodomínio LIM/fisiologia , Masculino , Oogênese/genética , Sintenia
15.
Biomater Sci ; 10(4): 1026-1040, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024701

RESUMO

Modern medicine has increasingly higher requirements for antibacterial materials. To overcome this challenge, we use alkynyl monomers, amino monomers, formaldehyde, and acetic acid as raw materials to synthesize a series of poly-tetrahydropyrimidine (P-THP) polymers through multicomponent polymerizations (MCPs). P-THP polymers can effectively inhibit the growth of Gram-positive bacteria (Staphylococcus aureus, S. aureus) and Gram-negative bacteria (Escherichia. coli, E. coli), and can prevent bacteria from developing drug resistance within at least 16 generations. Besides, we prepared P-THP antibacterial coatings and explored their antibacterial properties. In vitro antibacterial experiments showed that P-THP coatings can prevent the formation of bacterial biofilms, and the coatings have a lasting killing effect on E. coli and S. aureus. The mouse wound infection experiments proved that P-THP polymers can significantly accelerate skin tissue regeneration and wound healing. Moreover, the P-THP textile obtained by electrospinning also has antibacterial properties and has great application prospects in the field of N95 masks. Generally speaking, P-THP polymers have considerable application potential in the field of treating bacterial infections and promoting wound healing.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Escherichia coli , Camundongos , Testes de Sensibilidade Microbiana , Polímeros , Infecções Estafilocócicas/tratamento farmacológico
16.
J Inorg Biochem ; 233: 111868, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636300

RESUMO

In this paper, two new iridium(III) complexes [Ir(ppy)2(CBIP)](PF6) (ppy = 2-phenylpyridine, CBIP = 2-(4'-chloro-(1,1'-biphenyl))-1H-imidazo[4,5-f][1,10]phenanthroline) (Ir1) and [Ir(piq)2(CBIP)](PF6) (piq = 1-phenylisoquinoline) (Ir2) were synthesized and characterized. The anticancer activity of the complexes against cancer A549, HepG2, SGC-7901, BEL-7402, HeLa and LO2 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Unexpectedly, the complexes exhibit no or low cytotoxic activity toward the selected cancer cells. To increase the anticancer activity, complexes Ir1 and Ir2 were encapsulated into the liposome to form Ir1lipo and Ir2lipo, while Ir1lipo and Ir2lipo show high cytotoxic efficacy against BEL-7402, SGC-7901 and HeLa cells and Ir2lipo displays moderate cytotoxic activity against A549 and HepG2. The anticancer mechanism was explored through wound healing, cell cycle arrest, apoptosis, the change of mitochondrial membrane potential and antitumor activity in vivo. The antitumor in vivo showed that Ir1Lipo (3.9 mg/kg) exhibited significant antitumor activity with an inhibitory rate of 62.16%. Additionally, the expression of B-cell lymphoma-2 family proteins was studies by western blotting analysis. The results demonstrate that Ir1lipo and Ir2lipo induce apoptosis in BEL-7402 cells via endoplasmic reticulum stress-mitochondrial pathway.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Retículo Endoplasmático , Células HeLa , Humanos , Irídio/metabolismo , Irídio/farmacologia , Lipossomos , Mitocôndrias
17.
Int J Biol Macromol ; 217: 792-802, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35902018

RESUMO

The high density and poor thermal insulation of traditional wood-plastic composites limited the application in the field of building materials. In this paper, wood fiber (WF) and PLA were used as raw materials and azodicarbonamide was used as the foaming agent. Lightweight WF/PLA composites were prepared by the hot-pressing foaming method, aiming to obtain renewable, low-density material with high strength-to-weight ratio and thermal insulation performance. The results showed that after adding 20 % WF into PLA, the cell morphology was excellent and the cell size was uniform. The magnification reached the minimum value of 0.36 g/cm3 and the foaming magnification was 3.42 times. The impact strength and compressive strength were 3.16 kJ/m3 and 4.12 MPa, its comprehensive mechanical properties were outstanding. The thermal conductivity of foamed materials was 0.110-0.148 (W/m·K), which was significantly lower than that of unfoamed materials and common wood. Its excellent mechanical properties and thermal insulation can be suitable for application in the construction field to replace traditional wood.


Assuntos
Poliésteres , Madeira , Materiais de Construção , Temperatura
18.
J Inorg Biochem ; 228: 111706, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033830

RESUMO

In this report, a new ligand TFBIP (TFBIP = 2-(4'-trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its three iridium (III) complexes [Ir(ppy)2(TFBIP)](PF6) (Ir1, ppy = 2-phenylpyridine), [Ir(bzq)2(TFBIP)](PF6) (Ir2, bzq = benzo[h]quinolone) and [Ir(piq)2(TFBIP)](PF6) (Ir3, piq = 1-phenylisoquinoline) were synthesized and characterized. The cytotoxicity in vitro of the complexes toward several cancer cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) methods. The complexes show no cytotoxicity (IC50 > 100 µM) against these cancer cells. To enhance anticancer activity, these complexes were trapped in liposomes to form Ir1Lipo, Ir2Lipo and Ir3Lipo. The liposomes Ir1Lipo, Ir2Lipo and Ir3Lipo exhibit high or moderate cytotoxic activity. In particular, Ir1Lipo can effectively inhibit the cell growth with a low IC50 value (< 10 µM) toward A549, HepG2, BEL-7402, B16, HeLa and SGC-7901 cells. Surprisingly, Ir1Lipo has no cytotoxic activity against the normal cell LO2 (IC50 > 100 µM). The apoptosis and pyroptosis were investigated. Ir3Lipo induces apoptosis with a high early apoptotic number of 37%. The reactive oxygen species (ROS) levels, mitochondrial permeability transition pore open and mitochondrial membrane potential were detected. The intracellular Ca2+ concentration and release of cytochrome c were investigated. The expression of Bcl-2 (B-cell lymphoma-2) family proteins was explored by western blot. The antitumor activity in vivo of Ir1Lipo was evaluated with an inhibitory rate of 53%.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação/química , Irídio/química , Lipossomos/química , Mitocôndrias/metabolismo , Piroptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Irídio/farmacologia , Lipossomos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fenantrolinas/química , Piridinas/química , Quinolinas/química , Espécies Reativas de Oxigênio/metabolismo
19.
Environ Sci Pollut Res Int ; 28(48): 69129-69148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34291410

RESUMO

Concomitant with the promotion of industrial transformation, sustainable development strategies, and accelerated urbanization, there has been an increase in the number of industrial relic restoration projects. However, there are many disputes over the value and development of such industrial relic restoration projects. In this work, we identified three evaluation indicators based on a study of 106 industrial relic restoration projects in China. A value assessment model composed of five parts combining the Delphi method and analytic hierarchy process was established. The results show that an effective assessment of the value of industrial relic restoration projects can enable the effective use of green technology, reduce construction costs, protect industrial heritage, and inherit historical culture. In addition, there are many uncertain factors in developing these projects, such as brownfield pollution and dilapidated buildings, and appropriate renewal strategies can reduce safety risks as well as maximize the heritage value. As there is limited research assessing the value of industrial relic restoration projects in China, our study can serve as a reference for the value assessment of existing building restoration projects including historical blocks and livable villages.


Assuntos
Indústrias , Aço , China , Poluição Ambiental , Urbanização
20.
Adv Sci (Weinh) ; 8(19): e2100368, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34351704

RESUMO

Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.


Assuntos
Anti-Infecciosos/química , Infecções Bacterianas/prevenção & controle , Biofilmes , Materiais Revestidos Biocompatíveis/química , Desenho de Equipamento/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA