Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174206, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914321

RESUMO

Microplastics and metal-based nanoparticles (NPs) are environmental pollutants that have attracted significant attention. However, there have been relatively few studies on the combined pollution of these substances in the soil-plant system. To investigate the environmental impact and interaction mechanisms of these two pollutants, a pot experiment was conducted to examine the effects of soil exposure on peanut growth. The experiment results revealed that polyethylene (PE) had a minimal effect on peanut growth, while CuO NPs significantly inhibited peanut growth. Peanut biomass decreased by over 50 % in all Cu treatments. The presence of PE significantly impacted the dissolution and absorption of CuO NPs. When 0.5 % PE was present, the dissolution and transformation of CuO NPs were limited, resulting in a total Cu concentration of 458 mg/kg. Conversely, when 5 % PE was present, the dissolution and transformation of CuO NPs were promoted, leading to a DTPA-Cu concentration of 141 mg/kg, the highest level observed. The distribution of trace elements in peanut stems also responded to the differences in Cu concentration. Both pollutants significantly disrupted soil bacteria, with CuO NPs having a more pronounced effect than PE. Throughout the entire growth cycle of peanuts, no chemical adsorption occurred between PE and CuO NPs, and CuO NPs had no significant impact on the aging rate of PE. In summary, this study provides insights into the environmental impact and transport mechanisms of composite pollution involving microplastics and metal-based nanoparticles in the soil-peanut system.


Assuntos
Arachis , Cobre , Nanopartículas Metálicas , Microplásticos , Polietileno , Poluentes do Solo , Cobre/toxicidade , Arachis/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade
2.
Environ Pollut ; 323: 121285, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796666

RESUMO

The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Estresse Oxidativo , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Poliésteres/metabolismo , Superóxido Dismutase/metabolismo , Expressão Gênica , Poluentes do Solo/análise , Catalase/metabolismo , Dano ao DNA , Malondialdeído/metabolismo
3.
Environ Pollut ; 337: 122547, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709123

RESUMO

Biodegradable microplastics (BMPs) pose serious environmental problems to soil organisms, and their adsorption capacity might make pesticides more dangerous for soil organisms. Therefore, in this study, polylactic acid (PLA) BMPs and imidacloprid (IMI) were used as a representative of BMPs and pesticides, respectively. Eisenia fetida was used as a test animal to investigate the effects of environmentally relevant concentrations of single and compound contaminated PLA BMPs and IMI on mortality, growth, number of offspring, tissue damage, and gut microorganisms of E.fetida. Exposure to PLA BMPs treatment and PLA BMPs + IMI treatment resulted in a sustained increase in E.fetida mortality, reaching 16.7% and 26.7%, respectively. The growth inhibition rate of single treatments was significantly increased. The compound contamination had the greatest effect on E.fetida offspring compared to the control. PLA BMPs and IMI cause histological damage to E.fetida, with the compound treatment causing the most severe damage. Based on the results of 16S sequencing, the bacterial communities in E.fetida gut and soil treated to PLA BMPs and IMI were significantly different. PLA BMPs + IMI treatment suppresses the abundance and diversity of E.fetida gut microorganisms, disrupting the homeostasis of bacterial communities and causing immune and metabolic dysfunction. These findings highlight the more severe damage of combined PLA BMPs and IMI pollution to E.fetida, and help to assess the risk of earthworm exposure to environmentally relevant concentrations of PLA BMPs and IMI.


Assuntos
Microbioma Gastrointestinal , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Microplásticos/metabolismo , Plásticos/toxicidade , Poluentes do Solo/análise , Praguicidas/metabolismo , Poliésteres/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA