Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 426: 127809, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836688

RESUMO

Efficient nano-scale chromium (Cr) remediating agents used in the water industry may find their application in soil difficult because of the strong aggregation effect. In this study, a millimeter-sized PANI/PVA/SA composite (PPS) was synthesized by embedding polyaniline (PANI) into polyvinyl alcohol (PVA)/sodium alginate (SA) gel beads. Additionally, the PPS was used to recover hexavalent chromium (Cr(VI)) contaminated water and soil to study the remediation impacts and mechanism. Results showed that the PPS was an irregular sphere with a pore size of 24.24 nm and exhibited strong adsorption capacity (83.1 mg/g) for removing Cr(VI) in water. The Cr(VI) adsorption by PPS could be well described with the pseudo-second-order kinetics and the Redlich-Peterson isotherm model, indicating that the chemical reactions were the controlling step in the Cr(VI) adsorption process. PPS also exhibited excellent physicochemical properties (< 13 mg/L TOC release) and reusability (efficiency of 95.25% after four runs) for Cr(VI) removal. Soil incubation results showed that the 5% PPS (5PPS) treatment could efficiently remove 24.17% of total Cr and 52.47% of Cr(VI) in the contaminated soil after 30 days. Meanwhile, the water-soluble and the leaching Cr contents were decreased by 43.37% and 61.78% in the 5PPS group, respectively. Elemental speciation by XPS revealed that Cr(VI) removal from solution and soil proceeded mainly by electrostatic attraction, reduction, and complexation/chelation. The study implied that PPS could be a useful amendment to remediate both the Cr(VI)-contaminated water and soil.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos , Compostos de Anilina , Cromo/análise , Cinética , Álcool de Polivinil , Solo , Poluentes Químicos da Água/análise
2.
Int J Antimicrob Agents ; 52(6): 811-818, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30176354

RESUMO

The objective of this study was to investigate the impact of cold atmospheric-pressure plasma (CAP) produced by a surface micro-discharge plasma source as a new strategy to combat the transmission of five multidrug-resistant (MDR) pathogens and Yersinia enterocolitica on typical hospital- and food-producing surfaces, e.g. stainless-steel. Approximately 106 CFU/cm2 of vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli and Y. enterocolitica were inoculated on a 3.14-cm2 stainless-steel surface. Bovine serum albumin (BSA) (3%) was used as a disruptive factor simulating natural organic material. The inoculated surfaces were subsequently exposed to CAP, generated by a peak-to-peak voltage of 10 kV with sinusoidal waveform and a frequency of 2 kHz, for 5, 10 and 20 min, respectively. Fluorescent staining with propidium iodide and SYTOTM 9 was used to demonstrate the manner of bacterial cell damage. Significant (P < 0.05) inactivation of 1.68 ± 0.17 up to 2.80 ± 0.17 log steps was achieved after 5 min of CAP treatment. However, bacterial reduction could be increased to 3.35 ± 0.1 up to 5.17 ± 0.67 log steps after 20 min of CAP treatment. Bacterial cells covered with BSA were statistically significantly less inactivated by CAP. Fluorescent staining showed a predominant level of orange-stained, sublethally damaged bacterial cells after 10 min of CAP treatment. In conclusion, CAP has the ability to inactivate MDR bacterial pathogens on stainless-steel surfaces. Further research is required to investigate the clinical features of CAP.


Assuntos
Desinfetantes/farmacologia , Microbiologia Ambiental , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/farmacologia , Pressão Atmosférica , Técnicas Bacteriológicas , Transmissão de Doença Infecciosa/prevenção & controle , Controle de Infecções/métodos , Coloração e Rotulagem , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA