Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(2): 181-187, 2022 Mar.
Artigo em Zh | MEDLINE | ID: mdl-35332715

RESUMO

Amino acids, the substrate of protein synthesis, are an important source of energy and nutrition, second only to glucose. Previous studies have found that both microorganisms and their host cells can metabolize amino acids, and the metabolites are widely involved in the regulation of various biological processes, including inflammation and immune response. Exploring the changes in amino acid metabolism during the pathogenesis and progression of diseases has become a new hot topic of research. We summarized in this review the research progress in the pathogenesis and progression of common oral diseases, including dental caries, periodontal diseases, Sjögren's syndrome, and even oral tumors, related to metabolism pathways of amino acids, especially tryptophan and arginine, and their metabolites, attempting to provide a theoretical basis for enhancing understanding of the pathogenic mechanism of the oral diseases, as well as guidance for clinical treatment.


Assuntos
Cárie Dentária , Aminoácidos/metabolismo , Humanos
2.
Small ; 15(50): e1905209, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631563

RESUMO

The bidirectional transport of nanoparticles and biological cells is of great significance in efficient biological assays and precision cell screening, and can be achieved with optical conveyor belts in a noncontact and noninvasive manner. However, implantation of these belts into biological systems can present significant challenges owing to the incompatibility of the artificial materials. In this work, an optical conveyor belt assembled from natural biological cells is proposed. The diameter of the belt (500 nm) is smaller than the laser wavelength (980 nm) and, therefore, the evanescent wave stably traps the nanoparticles and cells on the belt surface. By adjusting the relative power of the lasers injected into the belt, the particles or cells can be bidirectionally transported along the bio-conveyor belt. The experimental results are numerically interpreted and the transport velocities are investigated based on simulations. Further experiments show that the bio-conveyor belt can also be assembled with mammalian cells and then applied to dynamic cell transport in vivo. The bio-conveyor belt might provide a noninvasive and biocompatible tool for biomedical assays, drug delivery, and biological nanoarchitectonics.


Assuntos
Células/metabolismo , Nanopartículas/química , Adulto , Animais , Transporte Biológico , Simulação por Computador , Escherichia coli/metabolismo , Humanos , Masculino , Poliestirenos/metabolismo , Peixe-Zebra
3.
Appl Microbiol Biotechnol ; 103(3): 1393-1404, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30470868

RESUMO

Mounting evidence suggests a causal relationship between specific bacterial infections or microbial compositions and the development of certain malignant neoplasms. In this study, we performed research through 16S rRNA amplicon sequencing, qPCR and fluorescence in situ hybridization to certify the relationship between periodontal pathogens and oral squamous cell carcinoma (OSCC). Subgingival plaque, cancer and paracancerous tissues from 6 patients with OSCC were selected for mapping bacterial profiles by 16S rRNA amplicon sequencing. The research showed that periodontal pathogens were enriched in cancer and paracancerous tissues, while the bacterial profiles were similar between the cancer tissues and subgingival plaque. Furthermore, the relative abundance of Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis was detected in 61 cancer tissues, paracancerous tissues and subgingival plaque samples and in 30 normal tissues by qPCR. The results revealed that P. gingivalis and F. nucleatum existed at higher levels in cancer tissue than in normal tissues and were correlated with subgingival plaques. P. gingivalis was detected using a special oligonucleotide probe in 60.7% of OSCC tissues, 32.8% of paracancerous tissues and 13.3% of normal tissues. Relevance analysis showed that P. gingivalis infection was positively associated with late clinical staging, low differentiation and lymph node metastasis in patients with OSCC, which was accompanied by deeper periodontal pockets, severe clinical attachment loss and loss of teeth. This study revealed that there might be a close relationship between oral microorganisms, particularly periodontal pathogens, and OSCC, which might enrich the pathogenesis of oral squamous carcinoma.


Assuntos
Carcinoma de Células Escamosas/microbiologia , Fusobacterium nucleatum/isolamento & purificação , Neoplasias Bucais/microbiologia , Bolsa Periodontal/microbiologia , Porphyromonas gingivalis/isolamento & purificação , Streptococcus sanguis/isolamento & purificação , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Placa Dentária/microbiologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/microbiologia , Neoplasias Bucais/patologia , RNA Ribossômico 16S/genética
4.
Int J Mol Sci ; 20(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669621

RESUMO

Silver nanoparticles (AgNPs) can be synthesized from a variety of techniques including physical, chemical and biological routes. They have been widely used as nanomaterials for manufacturing cosmetic and healthcare products, antimicrobial textiles, wound dressings, antitumor drug carriers, etc. due to their excellent antimicrobial properties. Accordingly, AgNPs have gained access into our daily life, and the inevitable human exposure to these nanoparticles has raised concerns about their potential hazards to the environment, health, and safety in recent years. From in vitro cell cultivation tests, AgNPs have been reported to be toxic to several human cell lines including human bronchial epithelial cells, human umbilical vein endothelial cells, red blood cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver cells, etc. AgNPs induce a dose-, size- and time-dependent cytotoxicity, particularly for those with sizes ≤10 nm. Furthermore, AgNPs can cross the brain blood barrier of mice through the circulation system on the basis of in vivo animal tests. AgNPs tend to accumulate in mice organs such as liver, spleen, kidney and brain following intravenous, intraperitoneal, and intratracheal routes of administration. In this respect, AgNPs are considered a double-edged sword that can eliminate microorganisms but induce cytotoxicity in mammalian cells. This article provides a state-of-the-art review on the synthesis of AgNPs, and their applications in antimicrobial textile fabrics, food packaging films, and wound dressings. Particular attention is paid to the bactericidal activity and cytotoxic effect in mammalian cells.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Prata/farmacologia , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Animais , Polímeros/síntese química , Polímeros/química , Prata/química , Testes de Toxicidade
5.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424535

RESUMO

Graphene, graphene oxide, and reduced graphene oxide have been widely considered as promising candidates for industrial and biomedical applications due to their exceptionally high mechanical stiffness and strength, excellent electrical conductivity, high optical transparency, and good biocompatibility. In this article, we reviewed several techniques that are available for the synthesis of graphene-based nanomaterials, and discussed the biocompatibility and toxicity of such nanomaterials upon exposure to mammalian cells under in vitro and in vivo conditions. Various synthesis strategies have been developed for their fabrication, generating graphene nanomaterials with different chemical and physical properties. As such, their interactions with cells and organs are altered accordingly. Conflicting results relating biocompatibility and cytotoxicity induced by graphene nanomaterials have been reported in the literature. In particular, graphene nanomaterials that are used for in vitro cell culture and in vivo animal models may contain toxic chemical residuals, thereby interfering graphene-cell interactions and complicating interpretation of experimental results. Synthesized techniques, such as liquid phase exfoliation and wet chemical oxidation, often required toxic organic solvents, surfactants, strong acids, and oxidants for exfoliating graphite flakes. Those organic molecules and inorganic impurities that are retained in final graphene products can interact with biological cells and tissues, inducing toxicity or causing cell death eventually. The residual contaminants can cause a higher risk of graphene-induced toxicity in biological cells. This adverse effect may be partly responsible for the discrepancies between various studies in the literature.


Assuntos
Materiais Biocompatíveis/toxicidade , Grafite/síntese química , Grafite/toxicidade , Nanoestruturas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Polímeros/toxicidade
6.
ACS Infect Dis ; 10(4): 1152-1161, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442009

RESUMO

Periodontitis, a chronic infectious disease in periodontal tissues, is characterized by an imbalance of alveolar bone resorption and remodeling, which eventually results in tooth loosening and even tooth loss. The etiology of periodontitis is polymicrobial synergy and dysbiosis, in which Porphyromonas gingivalis (P. gingivalis) is one of the primary pathogens responsible for periodontitis progression. The interplay of EphrinB2/EphB4 is crucial for osteoblast-osteoclast communication during bone remodeling and healing. This study investigates the mechanism of EphB4/EphrinB2 transduction modulating osteogenesis inhibition and bone resorption in periodontitis induced by P. gingivalis. An in vivo model of chronic periodontitis provoked by P. gingivalis was constructed, the inflammation and bone resorption were evaluated. The expression of EphB4 and EphrinB2 proteins in periodontal tissues was detected, which was also evaluated, respectively, in osteoblasts and osteoclasts infected with P. gingivalis in vitro. Then, a simulated coculture model of osteoblasts and osteoclasts was established to activate the forward and reverse pathways of EphB4/EphrinB2 with P. gingivalis infection. This study showed that P. gingivalis infection promoted alveolar bone resorption in rats and enhanced EphB4 and EphrinB2 expression in periodontal tissues. EphB4 and molecules associated with osteogenesis in osteoblasts infected with P. gingivalis were inhibited, while EphrinB2 and osteoclast differentiation-related markers in osteoclasts were activated. In conclusion, this study suggested that EphB4/EphrinB2 proteins were involved in alveolar bone remodeling in the process of periodontitis induced by P. gingivalis infection. Moreover, attenuated EphB4/EphrinB2 with P. gingivalis infection weakened osteoblast activity and enhanced osteoclast activity.


Assuntos
Reabsorção Óssea , Periodontite , Receptor EphB2 , Receptor EphB4 , Animais , Ratos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/microbiologia , Osteoclastos/metabolismo , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Transdução de Sinais , Receptor EphB2/metabolismo , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia
7.
ACS Nano ; 18(34): 23797-23811, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39140567

RESUMO

Cancer immunotherapy has emerged as a promising approach to cancer treatment in recent years. The physical and chemical properties of nanocarriers are critical factors that regulate the immune activation of antigen-presenting cells (APCs) in the tumor microenvironment (TME). Herein, we extensively investigated the behavior of liposome nanoparticles (Lipo-NPs) with different elasticities, focusing on their interaction with immune cells and their transport mechanisms from tumors to tumor-draining lymph nodes (tdLNs). Successfully preparing Lipo-NPs with distinct elastic properties, their varied behaviors were observed, concerning immune cell interaction. Soft Lipo-NPs exhibited an affinity to cell membranes, while those with medium elasticity facilitated the cargo delivery to macrophages through membrane fusion. Conversely, hard Lipo-NPs enter macrophages via classical cellular uptake pathways. Additionally, it was noted that softer Lipo-NPs displayed superior transport to tdLNs in vivo, attributed to their deformable nature with lower elasticity. As a result, the medium elastic Lipo-NPs with agonists (cGAMP), by activating the STING pathway and enhancing transport to tdLNs, promoted abundant infiltration of tumor-infiltrating lymphocytes (TILs), leading to notable antitumor effects and extended survival in a melanoma mouse model. Furthermore, this study highlighted the potential synergistic effect of medium elasticity Lipo-NPs with immune checkpoint blockade (ICB) therapy in preventing tumor immune evasion. These findings hold promise for guiding immune-targeted delivery systems in cancer immunotherapy, particularly in vaccine design for tdLNs targeting and eradicating metastasis within tdLNs.


Assuntos
Elasticidade , Imunoterapia , Lipossomos , Lipossomos/química , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Humanos , Feminino , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Linhagem Celular Tumoral
8.
Int J Biol Macromol ; 275(Pt 2): 133724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977054

RESUMO

Cellulose papers (CPs) possess a pore structure, rendering them ideal precursors for carbon scaffolds because of their renewability. However, achieving a tradeoff between high electromagnetic shielding effectiveness and low reflection coefficient poses a tremendous challenge for CP-based carbon scaffolds. To meet the challenge, leveraging the synergistic effect of gravity and evaporation dynamics, laminar CP-based carbon scaffolds with a bidirectional gradient distribution of Fe3O4 nanoparticles were fabricated via immersion, drying, and carbonization processes. The resulting carbon scaffold, owing to the bidirectional gradient structure of magnetic nanoparticles and unique laminar arrangement, exhibited excellent in-plane electrical conductivity (96.3 S/m), superior electromagnetic shielding efficiency (1805.9 dB/cm2 g), low reflection coefficients (0.23), and a high green index (gs, 3.38), suggesting its green shielding capabilities. Furthermore, the laminar structure conferred upon the resultant carbon scaffold a surprisingly anisotropic thermal conductivity, with an in-plane thermal conductivity of 1.73 W/m K compared to a through-plane value of only 0.07 W/m K, confirming the integration of thermal insulation and thermal management functionalities. These green electromagnetic interference shielding materials, coupled with thermal insulation and thermal management properties, hold promising prospects for applications in sensitive devices.


Assuntos
Carbono , Celulose , Carbono/química , Celulose/química , Condutividade Térmica , Condutividade Elétrica , Temperatura
9.
Front Pharmacol ; 14: 1161728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124229

RESUMO

Background: Certain drugs can cause intrinsic or extrinsic tooth discoloration, which is not only a clinical issue but also an esthetic problem. However, limited investigations have focused on drug-induced tooth discoloration. The present work aimed to determine the drugs causing tooth discoloration and to estimate their risks of causing tooth discoloration. Methods: An observational, retrospective, and pharmacovigilance analysis was conducted, in which we extracted adverse event (AE) reports involving tooth discoloration by using the data of the US Food and Drug Administration's Adverse Event Reporting System (FAERS) from the first quarter (Q1) of 2004 to the third quarter (Q3) of 2021. Disproportionality analyses were performed to examine risk signals for tooth discoloration and determine the drugs inducing tooth discoloration. Results: Based on predefined inclusion criteria, 1188 AE reports involving 302 suspected drugs were identified. After data mining, 25 drugs generated positive risk signals for tooth discoloration, of which 10 were anti-infectives for systemic use. The top reported drug was tetracycline (n = 106), followed by salmeterol and fluticasone (n = 68), amoxicillin (n = 60), chlorhexidine (n = 54), and nicotine (n = 52). Cetylpyridinium (PRR = 472.2, ROR = 502.5), tetracycline (PRR = 220.4, ROR = 277), stannous fluoride (PRR = 254.3, ROR = 262.8), hydrogen peroxide (PRR = 240.0, ROR = 247.6), and chlorhexidine (PRR = 107.0, ROR = 108.4) showed stronger associations with tooth discoloration than the remaining drugs. Of 625 AE reports involving 25 drugs with positive risk signals, tooth discoloration was mostly reported in patients aged 45-64 (n = 110) and ≤18 (n = 95), and 29.4% (192/652) of the reports recorded serious outcomes. Conclusion: This study revealed that certain drugs are significantly associated with tooth discoloration. Caution should be exercised when using these drugs, especially during pregnancy and early childhood.

10.
J Periodontol ; 93(4): 515-525, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34458990

RESUMO

BACKGROUND: Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) participate in the formation and progression of periodontitis. They can exert virulence by invading into host cells, but the interaction between them and their specific mechanisms remain unclear. The purpose of this study was to study the effect of P. gingivalis outer membrane vesicles (OMVs) on the ability of F. nucleatum to invade oral epithelial cells, and the reasons for the influence. METHODS: The invasion abilities of the two bacteria were detected separately after mixed infection of P. gingivalis and F. nucleatum. Next, P. gingivalis OMVs were extracted with the kit, and their influence on the invasion ability of F. nucleatum was tested. The effects of P. gingivalis OMVs on F. nucleatum were evaluated by assessment of bacterial morphology, growth curves, auto-aggregation morphology, and the expression of adhesion-related proteins FadA and FomA. RESULTS: Our results showed that P. gingivalis inhibited the invasion of F. nucleatum into oral epithelial cells but F. nucleatum promoted the invasion of P. gingivalis. In subsequent experiments, we extracted P. gingivalis OMVs successfully and revealed that proteases in P. gingivalis OMVs inhibited the invasion of F. nucleatum into oral epithelial cells. Furthermore, P. gingivalis OMVs did not affect the morphology and proliferation of F. nucleatum, but proteases inside decreased the auto-aggregation of F. nucleatum. Additionally, proteases in P. gingivalis OMVs reduced the expression levels of F. nucleatum surface adhesion-related proteins FadA and FomA. CONCLUSION: Our study demonstrated that proteases in P. gingivalis OMVs inhibited the invasion of F. nucleatum into oral epithelial cells by downregulating FadA and FomA.


Assuntos
Fusobacterium nucleatum , Porphyromonas gingivalis , Células Epiteliais , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia
11.
Int J Oral Sci ; 13(1): 31, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593756

RESUMO

Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.


Assuntos
Colite Ulcerativa , Porphyromonas gingivalis , Desiminases de Arginina em Proteínas , Animais , Colite Ulcerativa/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência
12.
Int J Oral Sci ; 12(1): 4, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31932579

RESUMO

The morphology of the alveolar bone at the maxillary anterior teeth in periodontitis patients was evaluated by cone-beam computed tomography (CBCT) to investigate the distribution of alveolar defects and provide guidance for clinical practice. Ninety periodontitis patients and 30 periodontally healthy individuals were selected to determine the morphology of the alveolar bone at the maxillary anterior teeth according to the degree of bone loss, tooth type, sex and age. The differences in the dimensions between periodontitis patients and healthy individuals were compared, and the distribution of alveolar bone defects was analyzed. A classification system was established regarding the sagittal positions and angulations of the teeth. The buccal residual bone was thicker and the lingual bone was thinner in the periodontitis patients than in the periodontally healthy individuals, and there were differences between the different tooth types, sexes and age subgroups. The buccal undercut was close to the alveolar ridge, while fenestration was reduced and the apical bone height was higher in periodontitis patients than in periodontally healthy individuals. The apical bone height increased with the aggravation of bone loss and age. The proportions of different sagittal positions changed with the aggravation of bone loss. Moreover, the teeth moved more buccally regarding the positions of the maxillary anterior teeth. The morphology of the alveolar bone at the maxillary anterior teeth differed between periodontitis patients and healthy individuals, and the differences were related to the degree of bone loss, tooth type, sex and age.


Assuntos
Processo Alveolar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Incisivo/diagnóstico por imagem , Maxila/diagnóstico por imagem , Periodontite/diagnóstico por imagem , Adulto , Processo Alveolar/anatomia & histologia , Feminino , Humanos , Incisivo/anatomia & histologia , Masculino , Maxila/anatomia & histologia , Estudos Retrospectivos , Ápice Dentário/anatomia & histologia , Ápice Dentário/diagnóstico por imagem , Colo do Dente/anatomia & histologia , Colo do Dente/diagnóstico por imagem
13.
Oral Oncol ; 107: 104710, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371264

RESUMO

OBJECTIVES: Previous studies have proved that periodontitis is an independent risk factor of oral squamous cell carcinoma (OSCC) epidemiologically. Along with the important role of microbiota in the cancer process and the specific anatomical position, our study explored the microbial composition and functions in periodontitis and gingival squamous cell carcinoma (GSCC). MATERIALS AND METHODS: GSCC patients (n = 10), matched periodontitis patients (n = 15), and healthy individuals (n = 15) were recruited. Saliva, subgingival plaque, tongue dorsum, buccal mucosa, cancerous tissue, and paracancerous tissue samples were collected. 16S rDNA amplicon sequencing and functional prediction were applied for the taxonomic analysis. RESULTS: Periodontal pathogens occupied 46% in GSCC. Besides, the mutual operational taxonomy unites (OTU) generated from the subgingival plaque occupied 38.36% and 44.13% from saliva. Fusobacterium, Peptostreptococcus, and Prevotella were more abundant in cancerous tissues, while Streptococcus, Neisseria, and Haemophilus were more enriched in saliva or soft mucosa. PCoA exhibited similar cluster between tongue dorsum and saliva in GSCC. GSCC showed lower richness than periodontitis. In saliva and subgingival plaque, Atopobium was more prevalent in GSCC than periodontitis and controls in descending order. Lipopolysaccharide (LPS) biosynthesis increased in subgingival plaque of GSCC compared with the other two groups. CONCLUSION: Periodontal pathogens were abundant in GSCC. Cancerous tissues harbor enriched periodontal pathogens while saliva or soft mucosa harbored more periodontal health related bacteria. A high level of Atopobium in saliva and LPS biosynthesis have the potential for increasing the risk of suffering from GSCC in individuals with periodontitis, which needs more evidence to clarify it.


Assuntos
Carcinoma de Células Escamosas/microbiologia , Gengiva/microbiologia , Microbiota/fisiologia , Neoplasias Bucais/microbiologia , Periodontite/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA