RESUMO
Leading health authorities have suggested short-range airborne transmission as a major route of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, there is no simple method to assess the short-range airborne infection risk or identify its governing parameters. We proposed a short-range airborne infection risk assessment model based on the continuum model and two-stage jet model. The effects of ventilation, physical distance and activity intensity on the short-range airborne exposure were studied systematically. The results suggested that increasing physical distance and ventilation reduced short-range airborne exposure and infection risk. However, a diminishing return phenomenon was observed when the ventilation rate or physical distance was beyond a certain threshold. When the infectious quantum concentration was less than 1 quantum/L at the mouth, our newly defined threshold distance and threshold ventilation rate were independent of quantum concentration. We estimated threshold distances of 0.59, 1.1, 1.7 and 2.6 m for sedentary/passive, light, moderate and intense activities, respectively. At these distances, the threshold ventilation was estimated to be 8, 20, 43, and 83 L/s per person, respectively. The findings show that both physical distancing and adequate ventilation are essential for minimising infection risk, especially in high-intensity activity or densely populated spaces.
RESUMO
A dextran-peptide conjugate was developed for magnetic resonance (MR) molecular imaging of pancreatic ductal adenocarcinoma (PDAC) through its overexpressed microenvironment biomarker, extradomain-B fibronectin (EDB-FN). This new agent consists of diamagnetic and biocompatible dextran and a targeting peptide. Dextrans can be directly detected by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) without the need for radionuclide or metallic labeling. In addition, large molecular weight dextran, dextran 10 (MW â¼ 10 kDa), provides an approximately 50 times higher sensitivity per molecule than a single glucose unit. The potential of this highly biocompatible diamagnetic probe is demonstrated in a murine syngeneic allograft PDAC tumor model. The biocompatibility and sensitivity of this new agent clearly show potential for a path to clinical translation.
Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Dextranos/química , Fibronectinas/química , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Materiais Biocompatíveis , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Xenoenxertos , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologiaRESUMO
During the Coronavirus disease 2019 pandemic, short-range virus transmission has been observed to have a higher risk of causing infection than long-range virus transmission. However, the roles played by the inhalation and large droplet routes cannot be distinguished in practice. A recent analytical study revealed the predominance of short-range inhalation over the large droplet spray route as causes of respiratory infections. In the current study, short-range exposure was analyzed via computational fluid dynamics (CFD) simulations using a discrete phase model. Detailed facial membranes, including eyes, nostrils, and a mouth, were considered. In CFD simulations, there is no need for a spherical approximation of the human head for estimating deposition nor the "anisokinetic aerosol sampling" approximation for estimating inhalation in the analytical model. We considered two scenarios (with two spheres [Scenario 1] and two human manikins [Scenario 2]), source-target distances of 0.2 to 2 m, and droplet diameters of 3 to 1,500 µm. The overall CFD exposure results agree well with data previously obtained from a simple analytical model. The CFD results confirm the predominance of the short-range inhalation route beyond 0.2 m for expiratory droplets smaller than 50 µm during talking and coughing. A critical droplet size of 87.5 µm was found to differentiate droplet behaviors. The number of droplets deposited on the target head exceeded those exposed to facial membranes, which implies a risk of exposure through the immediate surface route over a short range. Electronic Supplementary Material ESM: the Supplementary Materials are available in the online version of this article at 10.1007/s12273-022-0968-y.
RESUMO
Surface sampling is a frequent task in laboratory work and field studies. Simple methods usually have low efficiency in collecting target substances from surfaces. This study developed an advanced tape-stripping approach for efficient sampling on non-absorbent surfaces. A film-forming solution, prepared using polyvinyl alcohol, is applied to the target surface, where it covers and engulfs the surface deposits and then solidifies into an elastic membrane as it is exposed to air. The deposits are collected by stripping off the membrane and re-dissolving it in water. This new approach exhibited an efficiency of 100% in collecting uniform-size microspheres from glass surfaces and extremely high efficiencies (>96.6%) in detecting selected target DNA materials from glass and stainless steel surfaces. In comparison, the common swab-rinse method exhibited an efficiency of 72.6% under similar measuring conditions. The viability of S. aureus during sampling using the new approach decreased as the ethanol concentration in the applied solution increased. Using a solution with a mass ratio of ethanol of 17.6% balanced the effects of multiplication and degradation of the S. aureus on glass surfaces during sampling. Overall, the proposed approach exhibits high efficiency in collecting living and abiotic matter from non-absorbent surfaces, complementing existing sampling methods.
Assuntos
Aço Inoxidável , Staphylococcus aureus , Etanol , Álcool de Polivinil , ÁguaRESUMO
With the vigorous development of electronics and the increasingly prominent problem of environmental pollution, it is particularly important to exploit environmentally friendly electronic devices. Transient electronics represent a kind of device that once the specified functions have completed can completely or partially disappear through physical or chemical actions. In this work, we introduce a novel guar gum-cellulose aerogel (GCA) membrane based on natural biomaterials and successfully use it as an electrolyte film to fabricate a degradable zinc-ion battery (DZIB). All components of the prepared DZIBs can be successfully degraded or disintegrate in phosphate-buffered saline (PBS) containing a solution of proteinase K after approximately 40 days. This electrolyte film has a high ionic conductivity of approximately 4.73 × 10-2 S cm-1 and a good mechanical stress property. When applied to DZIB, the production of zinc dendrites can be restrained, leading to the battery showing excellent electrochemical performance. The battery exhibits a specific capacity of 309.1 mA h g-1 at a current density of 308 mA g-1 after 100 cycles and a steady cycling ability (100% capacity retention after 200 cycles). More importantly, the electrochemical performance of DZIB is better than that of transient batteries reported in the past, taking a solid step in the field of transient electronics in the initial stage.
Assuntos
Cyamopsis , Lítio , Celulose/química , Eletrólitos , Galactanos , Lítio/química , Mananas , Gomas Vegetais , ZincoRESUMO
Although health benefits of physical activity are well known, the risk of physical activity in polluted air is unclear. Our objective is to investigate health effects resulting from physical activity in polluted air by looking at particle deposition in human tracheobronchial (TB) airways. Airflow and particle deposition in TB airways were investigated using a computational fluid dynamics (CFD) method. We chose three regional airways: upper (G3-G5), central (G9-G11) and lower (G14-G16). Physical activity was described by breathing rate at the mouth, for three levels of activity: sedentary (15â¯l/min), moderate (30â¯l/min) and intense (60â¯l/min). We found that particle deposition was strongly affected by physical activity. Particles are deposited in greater number in the lower airways (G14-G16) during sedentary activity, more in the upper airways (G3-G5) during intense activity, and uniformly in the airways during moderate activity. The difference in the deposition pattern was due to the reason that physical activity increased the airflow which increased inertial impaction. Our modeling of particle deposition in the human respiratory airways shows that there are different health effects for different activity levels: sedentary activity leads to chronic health effects, intense activity results in acute effects, and moderate activity minimizes the adverse health effects of physical activity in polluted air.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Exercício Físico , Modelos Biológicos , Sistema Respiratório/efeitos dos fármacos , Poluentes Atmosféricos/química , Simulação por Computador , Humanos , Hidrodinâmica , Tamanho da Partícula , Material Particulado/efeitos adversosRESUMO
Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion.
Assuntos
Citidina Difosfato Colina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Lipossomos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Nootrópicos/administração & dosagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Injeções Intra-Articulares , RatosRESUMO
Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer.
Assuntos
Adenocarcinoma/patologia , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Desoxicitidina/análogos & derivados , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanomedicina Teranóstica , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Meios de Contraste , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Fluorescência , Humanos , Técnicas Imunoenzimáticas , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 10(5)-10(8) copies/mL (Hong Kong volunteers/assay) and 10(4)-10(7) copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these exposure time-frames. Various reasons are discussed in an attempt to explain these findings.
Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/virologia , Modelos Anatômicos , RNA Viral/genética , Adolescente , Adulto , Tosse , Expiração , Feminino , Hong Kong , Humanos , Influenza Humana/transmissão , Masculino , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , Respiração , Singapura , Carga ViralRESUMO
Respiratory infections can be spread via 'contact' with droplets from expiratory activities such as talking, coughing and sneezing, and also from aerosol-generating clinical procedures. Droplet sizes predominately determine the times they can remain airborne, the possibility of spread of infectious diseases and thus the strategies for controlling the infections. While significant inconsistencies exist between the existing measured data on respiratory droplets generated during expiratory activities, a food dye was used in the mouth during measurements of large droplets, which made the expiratory activities 'unnatural'. We carried out a series of experiments using glass slides and a microscope as well as an aerosol spectrometer to measure the number and size of respiratory droplets produced from the mouth of healthy individuals during talking and coughing with and without a food dye. The total mass of respiratory droplets was measured using a mask, plastic bag with tissue and an electronic balance with a high precision. Considerable subject variability was observed and the average size of droplets captured using glass slides and microscope was about 50-100 microm. Smaller droplets were also detected by the aerosol spectrometer. More droplets seemed to be generated when a food dye was used.
Assuntos
Tosse/fisiopatologia , Respiração Bucal/fisiopatologia , Tamanho da Partícula , Adulto , Aerossóis , Testes Respiratórios , Monitoramento Ambiental/métodos , Feminino , Humanos , Controle de Infecções/métodos , Masculino , FalaRESUMO
Understanding of bacterial survival in aerosols is crucial for controlling infection transmission via airborne aerosols and/or large droplets routes. The cell viability changes of four bacteria species (Escherichia coli K12 JM109; Acinetobacter sp. 5A5; Pseudomonas oleovorans X5; and Staphylococcus aureus X8), three Gram-negative and one Gram-positive, in a large evaporating droplet of size 1,800 microm in diameter on teflon-coated slides were measured using the LIVE/DEAD BacLight solution and a microscope. Droplets of three levels of salinity (0, 0.9, and 36% w/v) were tested. All four species survived well during the droplet evaporation process, but died mostly at the time when droplets were dried out at 40-45 min. The final bacteria survival rate after droplets were completely dried was dependent on bacteria species and the salinity of the suspension solution. Droplet evaporation over the first 35-40 min had no adverse effect on bacterial survival for the droplets tested. The lethal effect of desiccation was found to be the most important death mechanism.