Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(2): e2305967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984880

RESUMO

Transcatheter intervention has been the preferred treatment for congenital structural heart diseases by implanting occluders into the heart defect site through minimally invasive access. Biodegradable polymers provide a promising alternative for cardiovascular implants by conferring therapeutic function and eliminating long-term complications, but inducing in situ cardiac tissue regeneration remains a substantial clinical challenge. PGAG (polydioxanone/poly (l-lactic acid)-gelatin-A5G81) occluders are prepared by covalently conjugating biomolecules composed of gelatin and layer adhesive protein-derived peptides (A5G81) to the surface of polydioxanone and poly (l-lactic acid) fibers. The polymer microfiber-biomacromolecule-peptide frame with biophysical and biochemical cues could orchestrate the biomaterial-host cell interactions, by recruiting endogenous endothelial cells, promoting their adhesion and proliferation, and polarizing immune cells into anti-inflammatory phenotypes and augmenting the release of reparative cytokines. In a porcine atrial septal defect (ASD) model, PGAG occluders promote in situ tissue regeneration by accelerating surface endothelialization and regulating immune response, which mitigate inflammation and fibrosis formation, and facilitate the fusion of occluder with surrounding heart tissue. Collectively, this work highlights the modulation of cell-biomaterial interactions for tissue regeneration in cardiac defect models, ensuring endothelialization and extracellular matrix remodeling on polymeric scaffolds. Bioinspired cell-material interface offers a highly efficient and generalized approach for constructing bioactive coatings on medical devices.


Assuntos
Gelatina , Dispositivo para Oclusão Septal , Animais , Suínos , Gelatina/química , Polidioxanona , Células Endoteliais , Polímeros , Materiais Biocompatíveis , Ácido Láctico , Peptídeos
2.
J Biomed Mater Res A ; 102(12): 4301-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24497414

RESUMO

To integrate tissue engineering concepts into strategies to repair spinal cord injury (SCI) has been a hotspot in recent years, and the choice of scaffolding material is crucial to tissue engineering. Recently, decellularized nerve scaffold becomes a central concern due to its peculiar superiority. In this study, the decellularized nerve scaffold was prepared with three different methods and a comparison was made to acquire an ideal scaffold materials. All sciatic nerves from Sprague-Dawley (SD) rats were randomly divided into four groups: A: normal control group, B: TritonX-100 with sodium deoxycholate group, C: TritonX-100 with enzyme group and D: freezing-thawing with enzyme group. Histology and transmission electron microscope were exploited to evaluate the effect of removing cells and immunological histological chemistry was exploited to evaluate immunogenicity. Meanwhile the mechanical properties were evaluated by mechanics index. Hematoxylin and eosin (HE) staining and electron microscopic examinations reveal that the cell components and myelin sheaths are the least in the freezing-thawing with enzyme group. Immunohistochemistry shows that the immunogenicity is lower in group B, C, and D than the control group, and the group D has the lowest immunogenicity. Mechanical testing shows that there is no significant difference after acellular processing. Sciatic nerve, cell-extracted by freezing-thawing with enzyme, could obtain the ideal scaffold materials which has no cells and myelin sheaths. In addition, the decellularized nerve scaffold has no immunogenicity and the mechanical property of normal sciatic nerve is preserved.


Assuntos
Teste de Materiais , Nervo Isquiático/química , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Masculino , Octoxinol/química , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA