Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(4): e1245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629759

RESUMO

BACKGROUND: Drug hypersensitivity is a major global public health issue with a significant increase in prevalence in populations. Here, we provide a deep insight into the frontier hotspot and future direction in the field of drug hypersensitivity. METHODS: A knowledge map is portrayed based on publications related to drug hypersensitivity from Web of Science Core Collection using CiteSpace. Co-occurrence relationships of countries, institutes, authors, journals, references, and keywords are constructed. According to the co-occurrence relationships, hotspots and future trends are overviewed. RESULTS: The United States ranked first in the world and China with the second highest publications was the only developing country. Torres, Mayorga, and Blanca were highly productive authors. Harvard University was the institution with the most research publications. Keywords co-occurrence analysis suggested applications in emerging causes, potential mechanisms, and clinical diagnosis as the research hotspots and development frontiers. CONCLUSION: Research on drug hypersensitivity is in a rapid development stage and an emerging trend in reports of anaphylaxis to polyethylene glycols is identified. Developing algorithms for understanding the standardization process of culprit drugs, clinical manifestations, and diagnostic methods will be the focus of future direction. In addition, a better understanding of the mechanisms to culprit drugs with immunological precise phenotypic definitions and high-throughput platforms is needed.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Humanos , Hipersensibilidade a Drogas/epidemiologia , Polietilenoglicóis , Bibliometria , Algoritmos
2.
J Appl Biomater Funct Mater ; 19: 22808000211023261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34102914

RESUMO

A slowly degradable bone scaffold can well maintain the balance between new bone regeneration and scaffold resorption, esp. for seniors or patients suffering from pathological diseases, because too fast degradation can lead to the loss of long-term biological stability and result in scaffold failure. In this present study, calcium phosphate silicate (CPS) and polydimethylsiloxane (PDMS) were blended in different ratios to formulate slurries for scaffold fabrication. The effects of crosslinked PDMS on the CPS material properties were first characterized and the most viable formulation of CPS-PDMS slurry was determined based on the aforementioned results to 3D fabricate scaffolds. The biocompatibility of CPS-PDMS was further evaluated based on the scaffold extract's cytotoxicity to osteoblast cells. Furthermore, real-time PCR was used to investigate the effects of scaffold extract to increase osteoblast proliferation. It is showed that the crosslinked PDMS interfered with CPS hydration and reduced both setting rate and compressive strength of CPS. In addition, CPS porosity was also found to increase with PDMS due to uneven water distribution as a result of increased hydrophobicity. Degradation and mineralization studies show that CPS-PDMS scaffold was slowly degradable and induced apatite formation. In addition, the in vitro analyses show that the CPS-PDMS scaffold did not exert any cytotoxic effect on osteoblast cells but could improve the cell proliferation via the TGFß/BMP signaling pathway. In conclusion, CPS-PDMS scaffold is proved to be slowly degradable and biocompatible. Further analyses are therefore needed to demonstrate CPS-PDMS scaffold applications in bone regeneration.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Dimetilpolisiloxanos , Humanos , Porosidade , Engenharia Tecidual
3.
Water Sci Technol ; 62(9): 2021-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21045327

RESUMO

Pelleting flocculation blanket (PFB) process has been successfully applied to high turbidity suspensions for high efficient solid/liquid separation. In this paper, by using the PFB process, a dynamic experimental study was carried out on concentrating ferric flocs sludge with a scale of 1.3-5.4 m(3)/h. The pilot experiment aimed to optimize the conditioning system and determine the operational parameters. Under the raw sludge concentrations of 103-1,154 mg/L, the system could achieve ideal conditioning effect with polyacrylamide (PAM) dosages of 0.3-2.7 mg/L, agitation speed of 10 rpm, and water up-flow rates of 18-48 m/h. Under the experimental conditions, the increase of polymer dosage would improve effluent turbidity and pellets settling behaviour, the moderate up-flow rate had no marked effect on treatment results, while too large surface loading could worsen effluent turbidity. The experimental results also revealed that there existed an approximately linear relationship between the raw sludge concentration and optimum PAM dosage, that is, the optimum dosage of PAM increased synchronously as the raw sludge concentration increased. While the relationship between the raw sludge concentration and maximum up-flow rate reflected another linear dependence, namely, the maximum up-flow rate would decreased linearly as the raw sludge concentration increased.


Assuntos
Compostos de Ferro/química , Esgotos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Resinas Acrílicas/química , Floculação , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA