Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hematol Oncol ; 16(1): 116, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037103

RESUMO

Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signaling molecules in the modulation of various physiological functions, including inflammatory responses. However, at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic acids and lipids, further exacerbating the development of inflammatory responses and causing various inflammatory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against damage. This review systematically outlines the dynamic balance of ROS production and clearance under physiological conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scavenging biomaterials.


Assuntos
Materiais Biocompatíveis , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Materiais Biocompatíveis/uso terapêutico , Proteínas/metabolismo , Inflamação , Anti-Inflamatórios
2.
Adv Healthc Mater ; 12(16): e2201989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36253093

RESUMO

Exosomes are cell-derived extracellular vesicles of 40-160 nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.


Assuntos
Exossomos , Vesículas Extracelulares , Nanoestruturas , Engenharia Tecidual , Sistemas de Liberação de Medicamentos
3.
Adv Sci (Weinh) ; 8(23): e2103266, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687279

RESUMO

Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.


Assuntos
Coagulação Sanguínea/fisiologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , COVID-19/diagnóstico , COVID-19/virologia , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibrina/química , Fibrina/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Interleucina-6/imunologia , Lipossomos/química , Microfluídica/métodos , Mutação , Nanopartículas/química , Agregação Plaquetária , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética
4.
Nutr J ; 9: 44, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20946656

RESUMO

BACKGROUND: Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism. METHODS: Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p < 0.05 defined as significant. RESULTS: The urinary silicon level increased significantly from 0.016 ± 0.010 mg/mg creatinine at baseline to 0.037 ± 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003), but there was no change for the PW group (0.010 ± 0.004 mg/mg creatinine at baseline vs. 0.009 ± 0.006 mg/mg creatinine at week 12, p = 0.679). The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p < 0.01). NTx, a urinary marker of bone resorption did not change during the study and was not affected by the silicon water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group. CONCLUSIONS: These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01067508.


Assuntos
Osso e Ossos/metabolismo , Pós-Menopausa , Silício/uso terapêutico , Água , Absorção , Colágeno Tipo I/urina , Feminino , Humanos , Pessoa de Meia-Idade , Peptídeos/urina , Silício/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA