Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Adv Res ; 50: 55-68, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36243399

RESUMO

INTRODUCTION: Serum amyloid P component (SAP) regulates the innate immune system and microbial diseases. Periodontitis is an inflammatory oral disease developed by the host immune system's interaction with the dysbiotic oral microbiome, thereby SAP could play a role in periodontitis pathogenicity. OBJECTIVES: To investigate the role of SAP in oral microbiome modulation and peridontitis pathogenicity. METHODS: In this study, wildtype and SAP-knockout (KO) mice were used. Ligature-based periodontitis was developed in mice. Oral microbiome diversity was analyzed by 16 s rRNA sequencing. Macrophages and Porphyromonas gingivalis (P. gingivalis) co-culture system analyzed the effect of SAP in macrophage phagocytosis of P. gingivalis. RESULTS: The level of SAP was upregulated in the periodontitis-affected periodontium of humans and mice but not in the liver and blood circulation. Periodontal macrophages were the key source of upregulated SAP in periodontitis. SAP-KO aggravated periodontal inflammation, periodontitis, and a higher number of M1-type inflammatory macrophage infiltration in the periodontium. The oral microbiome of SAP-KO periodontitis mice was altered with a higher abundance of Porphyromonas at the genus level. SAP-KO macrophages showed compromised phagocytosis of P. gingivalis in the co-culture system. Co-culture of SAP-KO macrophages and P. gingivalis induced the C5a expression and exogenous SAP treatment nullified this effect. Exogenous recombinant SAP treatment did not affect P. gingivalis growth and opsonization. PMX205, an antagonist of C5a, treatment robustly enhanced P. gingivalis phagocytosis by SAP-KO macrophages, indicating the involvement of the C5a-C5aR signaling in the compromised P. gingivalis phagocytosis by SAP-KO macrophages. CONCLUSION: SAP deficiency aggravates periodontitis possibly via C5a-C5aR signaling-mediated defective macrophage phagocytosis of P. gingivalis. A higher abundance of P. gingivalis during SAP deficiency could promote M1 macrophage polarization and periodontitis. This finding suggests the possible protecting role of elevated levels of periodontal SAP against periodontitis progression.


Assuntos
Periodontite , Porphyromonas gingivalis , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Camundongos Knockout , Periodontite/metabolismo , Fagocitose , Porphyromonas gingivalis/fisiologia , Transdução de Sinais , Componente Amiloide P Sérico/metabolismo
2.
Inflammation ; 46(5): 1917-1931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37289398

RESUMO

New consensus indicates type 2 diabetes mellitus (T2DM) and periodontitis as comorbidity and may share common pathways of disease progression. Sulfonylureas have been reported to improve the periodontal status in periodontitis patients. Glipizide, a sulfonylurea widely used in the treatment of T2DM, has also been reported to inhibit inflammation and angiogenesis. The effect of glipizide on the pathogenicity of periodontitis, however, has not been studied. We developed ligature-induced periodontitis in mice and treated them with different concentrations of glipizide and then analyzed the level of periodontal tissue inflammation, alveolar bone resorption, and osteoclast differentiation. Inflammatory cell infiltration and angiogenesis were analyzed using immunohistochemistry, RT-qPCR, and ELISA. Transwell assay and Western bolt analyzed macrophage migration and polarization. 16S rRNA sequencing analyzed the effect of glipizide on the oral microbial flora. mRNA sequencing of bone marrow-derived macrophages (BMMs) stimulated by P. gingivalis lipopolysaccharide (Pg-LPS) after treatment with glipizide was analyzed. Glipizide decreases alveolar bone resorption, periodontal tissue degradation, and the number of osteoclasts in periodontal tissue affected by periodontitis (PAPT). Glipizide-treated periodontitis mice showed reduced micro-vessel density and leukocyte/macrophage infiltration in PAPT. Glipizide significantly inhibited osteoclast differentiation in vitro experiments. Glipizide treatment did not affect the oral microbiome of periodontitis mice. mRNA sequencing and KEGG analysis showed that glipizide activated PI3K/AKT signaling in LPS-stimulated BMMs. Glipizide inhibited the LPS-induced migration of BMMs but promoted M2/M1 macrophage ratio in LPS-induced BMMs via activation of PI3K/AKT signaling. In conclusion, glipizide inhibits angiogenesis, macrophage inflammatory phenotype, and osteoclastogenesis to alleviate periodontitis pathogenicity suggesting its' possible application in the treatment of periodontitis and diabetes comorbidity.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Periodontite , Humanos , Camundongos , Animais , Osteogênese , Glipizida/metabolismo , Glipizida/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Ribossômico 16S/metabolismo , Virulência , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Osteoclastos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/metabolismo , RNA Mensageiro/metabolismo
3.
PLoS One ; 17(2): e0261513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143503

RESUMO

OBJECTIVE: The clinical benefits of simultaneous implant placement and soft tissue augmentation using different treatment modalities are unclear. The current meta-analysis aimed to compare the effect of simultaneous soft tissue augmentation using subepithelial connective tissue graft (SCTG) around immediate or delayed dental implant placement with other treatment modalities on the peri-implant tissue health and esthetic. METHODS: Up to May 2021, four databases (PubMed, EMBASE, Cochrane Central, and Google Scholar) were searched. Randomized control trials with follow-up >3 months, evaluating simultaneous implant placement (immediate or delayed) and soft tissue augmentation using SCTG compared with other treatment modalities were included. The predictor variables were SCTG versus no augmentation with/without guided bone regeneration (GBR) or other augmentation techniques (Acellular dermal matrix (ADM), Xenogeneic collagen matrix (XCM). The outcome variables were buccal tissue thickness (BTT), mid-buccal gingival level (MGL), marginal bone loss (MBL), and pink esthetic scores (PES). Cumulative mean differences (MD) and 95% confidence interval (CI) were estimated. RESULTS: Twelve studies were included. SCTG along with immediate implant placement (IIP) or delayed implant placement (DIP) showed a statistically significant improvement in BTT (Fixed; MD, 0.74; 95% CI, 0.51; 0.97), MGL (Fixed; MD, 0.5; 95% CI, 0.21; 0.80), PES (Fixed; MD, 0.79; 95% CI, 0.29; 1.29), and less MBL (Fixed; MD, -0.11; 95% CI, -0.14; -0.08) compared to no graft (P<0.05). A statistically insignificant differences in BTT (Random; MD, 0.62; 95% CI, -0.41; 1.65), MGL (Fixed; MD, -0.06; 95% CI, -0.23; 0.11), MBL (Fixed; MD, 0.36; 95% CI, -0.05; 0.77) and PES (Fixed; MD, 0.28; 95% CI, -0.10; 0.67) was observed when SCTG along with DIP was compared with no augmentation plus GBR. Similarly, no statistically significant difference was observed when comparing SCTG along with DIP with acellular dermal matrix (ADM) concerning BTT (MD:0.71, P = 0.18) and KMW (MD: 0.6, P = 0.19). CONCLUSION: There is a very low quality of evidence to provide recommendations on whether simultaneous dental implant placement (IIP or DIP) and soft tissue augmentation using SCTG is superior to no augmentation or is comparable to the other tissue augmentation materials in improving the quality and quantity of peri-implant tissues. Therefore, further, well-designed RCTs with larger sample sizes and long follow-up times are still needed.


Assuntos
Tecido Conjuntivo/transplante , Implantes Dentários , Regeneração Óssea/fisiologia , Colágeno/química , Colágeno/metabolismo , Gengiva/fisiologia , Humanos , Tecido Periapical/fisiologia
4.
Int J Biol Macromol ; 142: 366-375, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593715

RESUMO

Osteoinductive bone filling biomaterials are in high demand for effective bone defect reconstruction. In this study, we aimed to design both organic and inorganic substances containing strontium-doped hydroxyapatite/silk fibroin (SrHA/SF) biocomposite nanospheres as an osteoinductive bone defect-filling biomaterial. SrHA/SF nanospheres were prepared with different concentration of Sr using ultrasonic coprecipitation method. The nanospheres were characterized using XRD, FTIR, SEM, TEM, ICP-AES and TGA. Solid and dense SrHA/SF nanospheres with 500-700 nm size and rough surfaces were synthesized successfully. Higher crystallinity and HA/SF phase were observed with the increase in Sr-concentration. The doping of different concentration of Sr did not affect the size and surface characteristics of the nanospheres. ICP-AES data showed that Sr/Ca ratio in SrHA/SF is very close to the nominal value. Nanospheres with higher concentration of Sr did not negatively affect the biocompatibility, but enhanced viability of mesenchymal stem cells (MSCs). Moreover, SrHA/SF nanospheres showed higher osteogenic differentiation potential compared to HA/SF nanospheres as indicated by the results from ALP staining, ALP activity, and Runx2, Alp, Col-1 and Opn gene expression assay in MSCs culture. Our findings suggest this novel design of biocompatible and osteoinductive SrHA/SF biocomposite nanospheres as a potential bone defect-filling biomaterial for bone regenerative applications.


Assuntos
Fibroínas/química , Hidroxiapatitas/química , Nanosferas/química , Seda/química , Estrôncio/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Biomarcadores , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Front Cell Dev Biol ; 8: 593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760720

RESUMO

SLIT2, a member of neuronal guidance cues, has been reported to regulate inflammation and cancer progression. Periodontitis is an oral inflammatory disease that degenerates periodontal tissue, alveolar bone and tooth. This study aims to explore the expression pattern of SLIT2 in periodontitis and its role in disease progression and bone loss. Gingival tissue of 20 periodontitis patients and 20 healthy-controls was obtained. Ligature-induced periodontitis (LIP) mice-model was developed in Slit2-Tg and wild-type mice. The effect of SLIT2 on inflammation, immune cell infiltration, M1 macrophage polarization, and alveolar bone loss in periodontitis was analyzed extensively. In periodontitis-affected gingival-tissue, SLIT2 expression was 4.4-fold higher compared to healthy-volunteers. LIP enhanced SLIT2 expression in mice periodontitis-affected periodontal tissue (PAPT) and blood circulation of wild-type mice by 4. 6-, and 5.0-fold, respectively. In Slit2-Tg-mice PAPT, SLIT2 expression was 1.8-fold higher compared to wild-type mice. Micro-CT and histomorphometric analysis revealed a 1.3-fold higher cement-enamel-junction to the alveolar-bone-crest (CEJ-ABC) distance and alveolar bone loss in LIP Slit2-Tg-mice compare to LIP wild-type mice. Results from RNA-sequencing, RT-qPCR, and ELISA showed a higher expression of Cxcr2, Il-18, TNFα, IL-6, and IL-1ß in Slit2-Tg-mice PAPT compared to wild-type-mice. Slit2-Tg-mice PAPT showed a higher number of osteoclasts, M1 macrophages, and the upregulation of Robo1 expression. Slit2-Tg-mice PAPT showed upregulation of M1 macrophage marker CD16/32 and osteoclastogenic markers Acp5, Ctsk, and Nfatc1, but osteogenic markers (Alp, Bglap) remained unchanged. Immunohistochemistry unveiled the higher vasculature and infiltration of leucocytes and macrophages in Slit2-Tg-mice PAPT. RNA-sequencing, GO-pathway enrichment analysis, and western blot analysis revealed the activation of the MAPK signaling pathway in Slit2-Tg mice PAPT. In conclusion, SLIT2 overexpression in periodontitis intensifies inflammation, immune cells infiltration, M1 macrophage polarization, osteoclastogenesis, and alveolar bone loss, possibly via activation of MAPK signaling, suggesting the role of SLIT2 on exacerbation of periodontitis and alveolar bone loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA