Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593498

RESUMO

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Nitrilas , Estresse Oxidativo , Polietileno , Piretrinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Piretrinas/toxicidade , Nitrilas/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Polietileno/toxicidade , Adsorção
2.
Sci Total Environ ; 921: 171160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395170

RESUMO

The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.


Assuntos
Fungicidas Industriais , Pirazóis , Tiofenos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Environ Pollut ; 333: 122089, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364755

RESUMO

The co-exposure of microplastics (MPs) and other contaminants has aroused extensive attention, but the combined impacts of MPs and pesticides remain poorly understood. Acetochlor (ACT), a widely used chloroacetamide herbicide, has raised concerns for its potential bio-adverse effects. This study evaluated the influences of polyethylene microplastics (PE-MPs) for acute toxicity, bioaccumulation, and intestinal toxicity in zebrafish to ACT. We found that PE-MPs significantly enhanced ACT acute toxicity. Also, PE-MPs increased the accumulation of ACT in zebrafish and aggravate the oxidative stress damage of ACT in intestines. Exposure to PE-MPs or/and ACT causes mild damage to the gut tissue of zebrafish and altered gut microbial composition. In terms of gene transcription, ACT exposure triggered a significant increase in inflammatory response-related gene expressions in the intestines, while some pro-inflammatory factors were found to be inhibited by PE-MPs. This study provides a new perspective on the fate of MPs in the environment and on the assessment of the combined effects of MPs and pesticides on organisms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Plásticos/metabolismo , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
4.
Chirality ; 24(8): 628-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581666

RESUMO

The enantioselective degradation of indoxacarb in cabbage and soil has been investigated in Beijing and Anhui under open conditions. Indoxacarb enantiomers in samples were extracted with acetonitrile, cleaned up by florisil SPE column, separated on high performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral stationary phase (CDMPC-CSP), and determined by a photodiode array detector. The validation of the developed method by fortification rac-indoxcarb in cabbage and soil showed good accuracy and precision. The results of field trials indicated that the dissipation of indoxacarb enantiomers followed pseudo-first-order kinetics or first-order kinetics in cabbage and soil at two locations. The half-lives of two enantiomers in cabbage ranged from 2.8 to 4.6 d which were shorter than those in soil ranging from 23 to 35 d. The changes of enantiomeric fraction values proved that enantioselective degradation of indoxacarb happened in cabbage and soil. The (-)-indoxacarb showed faster degradation in the Beijing cabbage, whereas in the Anhui cabbage, (+)-indoxacarb preferentially degraded. In soil, preferential degradation of (+)-indoxacarb was observed at two locations.


Assuntos
Brassica/metabolismo , Oxazinas/química , Oxazinas/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismo , Solo/química , Calibragem , Celulose/química , Cromatografia Líquida de Alta Pressão , Oxazinas/análise , Oxazinas/isolamento & purificação , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA