Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflammation ; 47(1): 307-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782452

RESUMO

Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.


Assuntos
Pulpite , Animais , Humanos , Camundongos , Polpa Dentária/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Pulpite/metabolismo
2.
Int J Oral Sci ; 9(3): 133-138, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28452375

RESUMO

In an attempt to overcome the limitations of titanium in dental and orthopaedic clinical applications, a new method has been developed to prepare calcium carbonate coatings on sandblasted and acid-etched (SA) titanium implants. The purpose of this study was to investigate the effect of calcium carbonate-SA (CC-SA) implants on osseointegration in vivo. The surfaces of SA and CC-SA implants were characterised for surface morphology and surface chemistry. Subsequently, these two kinds of implants were implanted in the femoral condyles of rabbits. The implants were retrieved and prepared for histological and histomorphometric evaluation 1, 2, 4, 8 and 12 weeks after implantation. Significantly higher values of bone-to-implant contact of the entire implant except the gap area (BIC_ALL) and the bone-to-implant contact of the gap area (BIC_GAP) were found in animals with the CC-SA implants than in those with the SA implants at 4 weeks. Higher values of total gap bone were found in those with the CC-SA implants than in those with the SA implants at 1, 2 and 4 weeks. In conclusion, the current findings demonstrate that the calcium carbonate coating can improve and accelerate the early ingrowth of bone and osseointegration at the early healing phase. This may reduce clinical healing times and thus improve implant success rates.


Assuntos
Carbonato de Cálcio/farmacologia , Implantação Dentária Endóssea/métodos , Implantes Dentários , Osseointegração/fisiologia , Animais , Materiais Revestidos Biocompatíveis , Planejamento de Prótese Dentária , Fêmur/cirurgia , Implantes Experimentais , Masculino , Microscopia Eletrônica de Varredura , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Titânio/farmacologia
3.
J Biomed Mater Res A ; 102(7): 2395-407, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23946191

RESUMO

This research investigated osteogenic potencies of Farthing-Fray-Chen Titanium (FFcTi) implant with transitional porous-solid structure. The material characteristics, biomechanical property, osteogenic performances were assessed. FFcTi showed similar roughness as sand-blasted and acid etched titanium (SA), but was more hydrophilic than SA and machined commercial pure titanium (MA). Young's modulus of FFcTi implant in compressive tests was 15.8 ± 6.3 GPa, which was close to bone. In vitro observations manifested excellent spreading abilities of MC3T3-E1 cell on FFcTi and SA. Adhesion rates of MC3T3-E1 cells at 4 h gradually decreased on MA, SA, and FFcTi surfaces (MA > SA, p < 0.01; SA > FFcTi, p < 0.05), while cell proliferation ability on FFcTi was weaker than MA during 1-6 days (p < 0.01) and similar to MA and SA in day 11. ALP activity of cells on FFcTi at 14 day was higher than MA and lower than SA (p < 0.01). In a bone defect model of rabbits, BIC and bone volum ratio within 50 µm were significantly higher for FFcTi than MA (BIC, p < 0.01; BT0.05, p < 0.05) while bone volume ratio within 100 and 500 µm were of no differences. Micro CT analysis also showed similar results to the histomorphometric data. Thus, we conclude that FFcTi with melting sphere based multiporous structure has a hydrophilic, rough surface, and close modulus to bone. In vitro, its low proliferation and ALP activity promotion were similar to other micro scale roughed surface. In vivo test showed better osteogenesis ability when compared with MA at least in 2 weeks. Thus, this Farthing-Fray-Chen Titanium implant seems to hold considerable potential for bone implant applications.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Próteses e Implantes , Células 3T3 , Animais , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
4.
Angle Orthod ; 81(4): 600-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21446866

RESUMO

OBJECTIVES: To test the hypothesis that leukemia inhibitor factor (LIF) and LIF receptor (LIFR) are expressed in periodontal tissue and that their expression may be upregulated during orthodontic tooth movement. MATERIALS AND METHODS: Forces of 0.3 N were applied to move the upper left first molars mesially in 24 rats. These forces were kept constant for 3, 7, and 14 days and followed by animal sacrifice. The contralateral molars served as control. The rate of tooth movement was measured by Image J software. Paraffin-embedded sections of the upper jaws were prepared for histological and immunohistochemical analysis to test the LIF and LIFR expression. RESULTS: Loaded teeth showed a significantly higher rate of tooth movement. The periodontium of the moved teeth experienced tissue remodeling, while there was no obvious change in the contralateral controls. Furthermore, LIF and LIFR were expressed in the periodontal tissue, and there were statistically significant differences between the loaded and unloaded teeth at 3 and 14 days. LIF presented significantly higher expression on the tension side compared with the pressure side at 3 days. CONCLUSION: Both LIF and LIFR exist in the periodontal tissue, and continuous orthodontic forces induce the upregulation of LIF/LIFR production, suggesting that LIF/LIFR may play important roles in periodontium remodeling.


Assuntos
Análise do Estresse Dentário , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/biossíntese , Fator Inibidor de Leucemia/biossíntese , Ligamento Periodontal/metabolismo , Técnicas de Movimentação Dentária , Animais , Feminino , Osteoclastos/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
5.
J Endod ; 37(6): 819-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21787496

RESUMO

INTRODUCTION: The purpose of this study was to determine whether the leukemia inhibitory factor (LIF) is expressed in human dental tissue and exerts its effect on proliferation and odontoblastic differentiation of the dental pulp cells (DPCs). METHODS: An immunohistochemical assay was used to detect the expression of LIF and leukemia inhibitory factor receptor (LIFR) in the human dental pulp. The proliferation of DPCs was examined by culturing human primary DPCs in the presence of LIF with different doses or the neutralizing antibody to LIF. Western blot was performed to assay the phosphorylation of Janus kinase 2 (Jak2) and signal transducer and activator of transcription 3 (Stat3) in the presence or absence of LIF and/or AG 490, a specific inhibitor of Jak2. The odontoblastic differentiation of DPCs was determined using the alkaline phosphatase (ALP) activity assay, quantification of bone sialoprotein (BSP) and dentin sialophosphoprotein (DSPP) gene expression, and mineralization nodule formation. RESULTS: LIF and LIFR were present in the odontoblasts and DPCs. LIF induced proliferation of DPCs, which was inhibited by the LIF neutralizing antibody and AG 490. LIF induced phosphorylation of Jak2 and Stat3 but not in the presence of the AG490. ALP activity of DPCs, in the absence or presence of mineralization induction medium, was inhibited by LIF. Furthermore, the mineralization nodule formation and the expression of BSP and DSPP were inhibited by LIF. This inhibition on differentiation was attenuated by the AG490. CONCLUSIONS: LIF and LIFR are expressed in the human dental pulp. LIF promotes the proliferation of DPCs, and the odontoblastic differentiation is inhibited via the Jak2-Stat3 signaling pathway.


Assuntos
Polpa Dentária/citologia , Fator Inibidor de Leucemia/fisiologia , Odontoblastos/citologia , Adolescente , Fosfatase Alcalina/análise , Anticorpos Neutralizantes/farmacologia , Western Blotting , Calcificação Fisiológica/fisiologia , Diferenciação Celular , Proliferação de Células , Criança , Inibidores Enzimáticos/farmacologia , Proteínas da Matriz Extracelular/análise , Humanos , Imuno-Histoquímica , Sialoproteína de Ligação à Integrina/análise , Janus Quinase 2/análise , Janus Quinase 2/antagonistas & inibidores , Fator Inibidor de Leucemia/análise , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/análise , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/fisiologia , Fosfoproteínas/análise , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/análise , Sialoglicoproteínas/análise , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA