Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(22): e2205511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871143

RESUMO

Noble metal nanozymes hold promise in cancer therapy due to adjustable enzyme-like activities, unique physicochemical properties, etc. But catalytic activities of monometallic nanozyme are confined. In this study, 2D titanium carbide (Ti3 C2 Tx )-supported RhRu alloy nanoclusters (RhRu/Ti3 C2 Tx ) are prepared by a hydrothermal method and utilized for synergistic therapy of chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) on osteosarcoma. The nanoclusters are small in size (3.6 nm), uniform in distribution, and have excellent catalase (CAT) and peroxidase (POD)-like activities. Density functional theory calculations show that there is a significant electron transfer interaction between RhRu and Ti3 C2 Tx , which has strong adsorption to H2 O2 and is beneficial to enhance the enzyme-like activity. Furthermore, RhRu/Ti3 C2 Tx nanozyme acts as both PTT agent for converting light into heat, and photosensitizer for catalyzing O2 to 1 O2 . With the NIR-reinforced POD- and CAT-like activity, excellent photothermal and photodynamic performance, the synergistic CDT/PDT/PTT effect of RhRu/Ti3 C2 Tx on osteosarcoma is verified by in vitro and in vivo experiments. This study is expected to provide a new research direction for the treatment of osteosarcoma and other tumors.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Ligas , Osteossarcoma/tratamento farmacológico , Adsorção , Neoplasias Ósseas/tratamento farmacológico
2.
Small ; 17(51): e2104747, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34647419

RESUMO

Electrospun nanofiber membranes have been widely used for guided bone regeneration (GBR). For assistance in bone healing, photothermal therapy which renders moderate heat stimulation to defect regions by near-infrared (NIR) light irradiation has attracted much attention in recent years. Combined with photothermal therapy, novel electrospun poly(ε-caprolactone)/molybdenum disulfide (PCL/MoS2 ) nanofiber membranes are innovatively synthesized as GBR for bone therapy, wherein the exfoliated MoS2 nanosheets served as osteogenic enhancers and NIR photothermal agents. With the doping of MoS2 , the mechanical properties of nanofiber membranes got improved with the degradation unaffected. The composite PCL/MoS2 membranes show enhanced cell growth and osteogenic performance compared with PCL alone. Under NIR-triggered mild photothermal therapy, osteogenesis and bone healing are accelerated by using PCL/MoS2 nanofiber membranes for growth of bone mesenchymal stem cells in vitro and repair of rat tibia bone defect in vivo. The novel nanofiber membranes may be developed as intelligent GBR in the therapy of bone defects.


Assuntos
Nanofibras , Animais , Regeneração Óssea , Molibdênio , Osteogênese , Terapia Fototérmica , Poliésteres , Ratos
3.
Chem Commun (Camb) ; 50(92): 14429-32, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25302777

RESUMO

This communication describes a mild construction of hybrid hydrogels with supramolecular-polymeric networks via a dual enzymatic reaction.


Assuntos
Hidrogéis/química , Polímeros/química , Fosfatase Ácida/química , Acrilamidas/química , Fluorenos/química , Glucose/química , Glucose Oxidase/química , Fosfatos/química , Ftalimidas/química , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA