Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174113, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908577

RESUMO

The interception of microplastics (MPs) by mangrove roots plays an indispensable role in reducing the environmental risks of MPs. However, there remains limited research on the fate of the intercepted MPs. Hereby, the uptake and subsequent translocation of 0.2 µm and 2 µm PS MPs with different coating charge by the typical salt-secreting mangrove plants (Aegiceras corniculatum) were investigated. Compared to amino-functionalized PS with positive charge (PS-NH2), the visualized results indicated that the efficient uptake of carboxy-functionalized PS with negative charge (PS-COOH) was more dependent on taproots. But for the lateral roots, it only allowed the entry of PS-NH2 instead of PS-COOH. The specific uptake pathways of PS-NH2 on the lateral roots could attribute to the release of H+ and organic acids by root hairs, as well as the relative higher Zeta potential. After entering the Aegiceras corniculatum roots, the translocation of PS MPs was restricted by their particle sizes. Furthermore, the release of PS MPs from Aegiceras corniculatum leaf surfaces through the salt glands and stomata was observed. And the decline in the photochemical efficiency of leaves under PS MPs exposure also indirectly proved the foliar emission of PS MPs. Our study improved the understanding of the environmental behaviors and risks of the retained MPs in mangroves.


Assuntos
Microplásticos , Raízes de Plantas , Poluentes Químicos da Água , Áreas Alagadas , Microplásticos/metabolismo , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Primulaceae/metabolismo , Monitoramento Ambiental
2.
J Hazard Mater ; 465: 133372, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159519

RESUMO

Microplastic (MP) pollution of agricultural soils has caused global alarm over its widespread distribution and potential risks to terrestrial ecosystems and human health. This study assessed human health based on exposure to soil MPs through a comprehensive investigation of the factors influencing their occurrence and spatial distribution on Hainan Island, South China. The results showed that the abundance of soil MPs was 1128.6 ± 391.5 items·kg-1, whereas the normalized abundance of MPs based on using a power-law function was 19,261.4 items·kg-1. Regarding the extent of population exposure to agricultural soil MPs, the average daily exposure dose (pADD) model revealed that using mass as an indicator to assess the health risks associated with MP intake is more reliable than using abundance. However, abundance-based exposure assessments are also relevant because MPs with smaller particle sizes are more harmful to human health. Moreover, for adults, the normalized pADD values based on abundance and mass were 1.68E-02 item MPs·kg BW-1·d-1 and 7.23E-02 mg MPs·kg BW-1·d-1, respectively. Although the multidimensionality of MPs should be further aligned and quantified, the preliminary findings of this study contribute to the development of human health risk assessment frameworks for soil MPs.


Assuntos
Plásticos , Solo , Adulto , Humanos , Microplásticos , Ecossistema , Agricultura
3.
J Hazard Mater ; 457: 131732, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295328

RESUMO

Threats to food safety caused by the continuous accumulation of plastic particles in the terrestrial environment is currently a worldwide concern. To date, descriptions of how plastic particles pass the external biological barrier of crop root have been vague. Here, we demonstrated that submicrometre polystyrene particles passed unimpededly the external biological barrier of maize through the split of holes in the protective layer. We identified plastic particles induced the apical epidermal cells of root tips become round, thereby expanding the intercellular space. It further pulled apart the protective layer between the epidermal cells, and eventually formed the entry pathway for plastic particles. The enhancement of oxidative stress level induced by plastic particles was the main reason for the deformation of the apical epidermal cells (increased roundness values: 15.5%), comparing to the control. Our findings further indicated that the presence of cadmium was conducive to the "holes" formation. Our results highlighted the critical insights into the fracture mechanisms of plastic particles for the external biological barriers of crop roots, providing a strong incentive to access the risk of plastic particles in agriculture security.


Assuntos
Agricultura , Plásticos , Poliestirenos
4.
Chemosphere ; 307(Pt 1): 135714, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842040

RESUMO

Nanoplastics (NPs) (<1 µm) have gradually attracted worldwide attention owing to their widespread occurrence, distribution, and ecosystem risks. Few studies have explored the interaction between NPs and heavy metals in crops. In this study, we investigated the influence of polystyrene nanoplastics (PSNPs; 10 mg/L and 100 mg/L) and cadmium (2 mg/L and 10 mg/L) on the physiological and biochemical indices of maize plants, grown in Hoagland solution with contaminants, for 14 days. The fresh weight and growth of the maize plants were significantly reduced after exposure to high concentrations of PSNPs and Cd (p < 0.05). Specifically, the fresh weight decreased by 30.3% and 32.5% in the PSNPs and Cd treatment, respectively. Root length and shoot length decreased by 11.7% and 20.0%, and by 16.3% and 27.8%, in the PSNPs and Cd treatment, respectively. However, there were no significant effects on the fresh weight and growth of maize plants as Cd levels increased from 2 to 10 mg/L in the presence of PSNPs. Polystyrene nanoplastics alleviated the phytotoxicity of Cd in maize. Scanning electron microscopy (SEM) showed that PSNPs and Cd could enter maize roots and were transported upwards to the leaves through the vascular bundle. The activities of peroxidase (POD) and catalase (CAT) in maize leaves increased significantly under high concentrations of PSNPs, whereas superoxide dismutase (SOD) activity decreased (p < 0.05). The differences in SOD activity may be related to the absence of microelements such as Zn, Fe, and Mn. This study provides a scientific basis for further exploration of the combined toxicological effects of heavy metals and NPs on the environment.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Catalase , Ecossistema , Metais Pesados/farmacologia , Microplásticos , Peroxidases , Raízes de Plantas , Poliestirenos/farmacologia , Poluentes do Solo/análise , Superóxido Dismutase , Zea mays
5.
Chemosphere ; 248: 126067, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32041069

RESUMO

Microplastics (MPs) pollution and its potential environmental risks have drawn increasing concerns in recent years. Among which, microbeads in personal care and cosmetic products has becoming an emerging issue for their abundance as well as the knowledge gaps in their precise environmental behaviors in freshwater. The present study investigated the sorption process of tetrabromobisphenol A (TBBPA), the most widely applied and frequently encountered flame retardant in aquatic environments, on two sources of polyethylene (PE) particles (pristine PE particles and microbeads isolated from personal care and cosmetic products). Significantly enhanced adsorption capacity of microbeads was observed with up to 5-folds higher than the pristine PE particles. The sorption efficiency was also governed by solution pH, especially for the cosmetic-derived microbeads, indicating the strong adsorption of TBBPA on PE was dominated by both hydrophobic and electrostatic interactions. Additionally, combined effects on redox status of zebrafish were evaluated with two environmental relevant concentrations of PE particles (0.5 and 5 mg L-1) using integrated biomarker response (IBR) index through a 14-d exposure. Co-exposure induced significant antioxidative stress than either PE or TBBPA alone when exposed to 0.5 mg L-1 of MPs. After 7-d depuration, the IBR value for combination treatments [TBBPA + PE (L)] was 3-fold compared with that in MP-free groups, indicating the coexistence might exert a prolonged adverse effects on aquatic organisms. These results highlight the probability of risk from microbead pollution in freshwater, where toxic compounds can be adsorbed on microbeads in a considerable amount resulting in potential adverse effects towards aquatic organisms.


Assuntos
Cosméticos/química , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Adsorção , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Sinergismo Farmacológico , Biomarcadores Ambientais/efeitos dos fármacos , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Água Doce/química , Microplásticos/análise , Microesferas , Bifenil Polibromatos/análise , Polietileno/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA