Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720641

RESUMO

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

2.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110940

RESUMO

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Assuntos
Enterovirus Humano A , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Reishi , Criança , Animais , Humanos , Camundongos , Enterovirus Humano D/genética , Enterovirus Humano A/genética , Vacinas Combinadas , Antígenos Virais , Imunoglobulina A , Imunoglobulina G
3.
J Biomed Sci ; 26(1): 65, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481071

RESUMO

Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.


Assuntos
Antivirais/uso terapêutico , Enterovirus Humano A/imunologia , Infecções por Enterovirus/terapia , Vacinas Virais/uso terapêutico , Animais , Humanos , Camundongos
4.
J Biomed Sci ; 21: 18, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24602216

RESUMO

Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5' UTR, VP1, 3C, 3D, 3' UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.


Assuntos
Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/epidemiologia , Doença de Mão, Pé e Boca/epidemiologia , Surtos de Doenças , Enterovirus Humano A/genética , Infecções por Enterovirus/genética , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/virologia , Humanos , Tropismo/genética , Replicação Viral/genética
5.
J Biomed Sci ; 16: 103, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19925687

RESUMO

Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.


Assuntos
Infecções por Picornaviridae/virologia , Picornaviridae/fisiologia , Animais , Capsídeo/química , Genoma Viral , Humanos , Modelos Biológicos , Picornaviridae/genética , Infecções por Picornaviridae/metabolismo , Biossíntese de Proteínas , Interferência de RNA , RNA Viral/química , Proteínas Virais/química , Replicação Viral
6.
J Neurovirol ; 10(5): 293-304, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15385252

RESUMO

Enterovirus 71 (EV71) infection may be asymptomatic or may cause diarrhea, rashes, and hand, foot, and mouth disease (HFMD). However, EV71 also has the potential to cause severe neurological disease. To date, little is known about the molecular mechanisms of host response to EV71 infection. In this report, we utilized cDNA microarray to profile the kinetics and patterns of host gene expression in EV71-infected human neural SF268 cells. We have identified 157 genes with significant changes in mRNA expression and performed hierarchical clustering to classify these genes into five different groups based on their kinetics of expression. EV71 infection led to increases in the level of mRNAs encoding chemokines, proteins involved in protein degradation, complement proteins, and proapoptotis proteins. cDNA microarray expression comparisons of EV71- and mock-infected cells also revealed the down-regulation of several genes encoding proteins involved in host RNA synthesis. Expression of interferon-regulated proteins was increased early in the infection and then decreased. Expression of proteins involved in cellular development and differentiation, some oncogenes, and transcription and translation regulators were suppressed and then stimulated late in the infection. Our findings illustrate the overall host response to EV71 infection, and will aid in understanding the host response to this virus.


Assuntos
Infecções por Enterovirus/genética , Enterovirus , RNA Mensageiro/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA