Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(3): 400-411, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366969

RESUMO

Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Polímeros de Fluorcarboneto , Oxigênio , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia/tratamento farmacológico , Concentração de Íons de Hidrogênio
2.
J Periodontal Res ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807492

RESUMO

AIMS: This study aimed to elucidate the alterations in Follistatin-like protein 1 (FSTL1) and its association with the pathological process of periodontitis. METHODS: This study included 48 patients with periodontitis and 42 healthy controls. The expression level of FSTL1 in the gingiva was determined by RT-qPCR, validated using the dataset GSE16134, and subsequently examined by western blotting. Bioinformatics analysis revealed a single-cell distribution of FSTL1, characteristic of angiogenesis and immune cell infiltration. The expression and distribution of FSTL1, vascular endothelial marker protein CD31 and myeloperoxidase (MPO), the indicator of neutrophil activity, were determined by immunohistochemistry (IHC). A series of correlation analyses was performed to determine the associations between FSTL1 and clinical parameters, including probing depth (PD) and clinical attachment loss (CAL), and their potential role in angiogenesis (CD31) and neutrophil infiltration (MPO). RESULTS: FSTL1 was significantly upregulated in the gingiva of patients with periodontitis compared to their healthy counterparts. In addition, FSTL1 was positively correlated with the clinical parameters PD (r = .5971, p = .0005) and CAL (r = .6078, p = .0004). Bioinformatic analysis and IHC indicated that high FSTL1 expression was significantly correlated with angiogenesis and neutrophil infiltration in periodontitis. Moreover, receiver operating characteristic (ROC) analysis demonstrated that FSTL1 could serve as an independent indicator for evaluating the severity of periodontitis (area under the curve [AUC] = 0.9011, p < .0001). CONCLUSION: This study demonstrated FSTL1 upregulation in periodontitis and its potential contribution to the disease via angiogenesis and neutrophil infiltration.

3.
BMC Oral Health ; 24(1): 360, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515079

RESUMO

BACKGROUND: Entirely impacted mandibular third molar (EIM3M) concerns the pathological external root resorption (ERR) of the adjacent mandibular second molar (M2M) and formation of granulation tissue between two molars. The study aimed to clarify the effect of αENaC, a mechano-sensitive molecule, to explore the mechanical mechanism in this scenario. METHODS: The force EIM3M exerted on M2M was proved by finite element analysis. αENaC expressions were tested by real-time polymerase chain reaction (PCR), immunoblotting and immunofluorescence. Inflammatory and epithelial-mesenchymal transition (EMT)-related molecules expressions were also detected by real-time PCR. The correlation was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curve was further exhibited. RESULTS: The force was concentrated in the ERR area. αENaC was upregulated, positively correlated with ERR degree and localized to the fibroblasts in ERR granulation tissues. Moreover, αENaC was respectively and positively associated with elevated TNF-α and N-cadherin in ERR granulation tissues. More importantly, ROC analysis verified αENaC as a novel indication of the incidence of this disease. CONCLUSIONS: Our finding revealed the force from EIM3M causing ERR of M2M, and elucidated the expression and localization of αENaC and its positive correlation with inflammation, EMT and disease severity, suggesting a novel indication in this disease.


Assuntos
Reabsorção da Raiz , Dente Impactado , Humanos , Reabsorção da Raiz/etiologia , Dente Serotino , Tomografia Computadorizada de Feixe Cônico , Dente Molar
4.
BMC Oral Health ; 24(1): 465, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627713

RESUMO

BACKGROUND: Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS: Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS: Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS: This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.


Assuntos
Pulpite , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Inflamação , Dor , RNA Mensageiro
5.
Microb Ecol ; 86(3): 1589-1603, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36717391

RESUMO

Terrestrial microbial consortia were reported to play fundamental roles in the global carbon cycle and renewable energy production through the breakdown of complex organic carbon. However, we have a poor understanding of how biotic/abiotic factors combine to influence consortia assembly and lignocellulose degradation in aquatic ecosystems. In this study, we used 96 in situ lignocellulose enriched, coastal intertidal zone-derived bacterial consortia as the initial inoculating consortia and developed 384 cultured consortia under different lignocellulose substrates (aspen, pine, rice straw, and purified Norway spruce lignin) with gradients of salinity and temperature. As coastal consortia, salinity was the strongest driver for assembly, followed by Norway spruce lignin, temperature, and aspen. Moreover, a conceptual model was proposed to demonstrate different succession dynamics between consortia under herbaceous and woody lignocelluloses. The succession of consortium under Norway spruce lignin is greatly related with abiotic factors, while its substrate degradation is mostly correlated with biotic factors. A discrepant pattern was observed in the consortium under rice straw. Finally, we developed four groups of versatile, yet specific consortia. Our study not only reveals that coastal intertidal wetlands are important natural resources to enrich lignocellulolytic degrading consortia but also provides insights into the succession and ecological function of coastal consortium.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Ecossistema , Bactérias/metabolismo , Consórcios Microbianos , Oryza/metabolismo
6.
J Periodontal Res ; 57(3): 594-614, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35388494

RESUMO

BACKGROUND AND OBJECTIVE: Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue-dependent and disease-dependent. This study aimed to identify novel periodontitis-associated circRNAs and predict relevant circRNA-periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. MATERIAL AND METHODS: High-throughput sequencing and RT-qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA-disease association prediction, and circRNA-miRNA-mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver-operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. RESULTS: High-throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT-qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40-.69, p < .05, moderate). A circRNA-miRNA-mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321-0.8667, p < .05). CONCLUSION: CircRNA-disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560-23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.


Assuntos
MicroRNAs , Periodontite , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Periodontite/genética , RNA Circular/genética , RNA Mensageiro/genética
7.
Chem Soc Rev ; 50(10): 6042-6093, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027943

RESUMO

Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.


Assuntos
Lignina/química , Elementos de Transição/química , Biomassa , Carboidratos/química , Catálise , Furanos/química , Hidrogenação , Ácidos Levulínicos/química , Lignina/metabolismo , Magnetismo , Oxirredução
8.
J Environ Manage ; 304: 114295, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021589

RESUMO

This study investigated the impact of seasonal variation and operating conditions on recovery of potable quality water from municipal wastewater effluent using an integrated algal treatment process with a dual forward osmosis (FO)-reverse osmosis (RO) membrane system. Pilot study of the algal process treating primary effluent validated the technical viability and seasonal performance during warm weather (May to October, 25-55 °C) using an extremophilic algal strain Galdieria sulphuraria, and during cold weather (November to April, 4-17 °C) using polyculture strains of algae and bacteria. Algal effluents from both seasons were used as the feed solution for the laboratory FO-RO study. In addition, pilot-scale FO-RO experiments were conducted to compare the system performance during treatment of algal effluent and secondary effluent from the conventional treatment facility. At 90% water recovery, the FO-RO achieved over 90% overall rejection of major ions and organic matter using the bench-scale system and over 99% rejection of all contaminants in pilot-scale studies. Detailed water quality analysis indicated that the product water from the integrated system met both the primary and secondary drinking water standards. This study demonstrated that the FO-RO system can be engineered as a viable alternative to treat algal effluent and secondary effluent for potable water reuse independent of seasonal variations and operating conditions.


Assuntos
Água Potável , Purificação da Água , Membranas Artificiais , Osmose , Projetos Piloto , Águas Residuárias
9.
BMC Oral Health ; 22(1): 614, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527111

RESUMO

BACKGROUND: Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS: Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS: Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION: Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.


Assuntos
Periodontite , Humanos , Periodontite/metabolismo , Gengiva/metabolismo , Neutrófilos/metabolismo , Inflamação/patologia , Proteínas
10.
BMC Oral Health ; 22(1): 288, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842639

RESUMO

BACKGROUD: Root caries in aging population was prevalent worldwide. Due to the absence of enamel and specific structure of dentine, bacteria are able to penetrate further into dentine at an earlier stage of lesion development. The aim of this study was to investigate the effect of adding of a strontium-doped bioactive glass-ceramic (HX-BGC) to a fluoride-free toothpaste on prevention of formation of artificial dentine caries. METHODS: Thirty-six human tooth specimens were allocated to three groups (n = 12 per group). Group 1 treated with slurry containing a fluoride-free toothpaste and 5% HX-BGC, Group 2 was treated with fluoride-free toothpaste slurry, and Group 3 received deionized water as a negative control. The specimens were subjected to four cycles (15 h demineralization and 8 h remineralization for one cycle) of biochemical cycling. A mixed suspension of five bacteria species (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces naeslundii) were prepared in brain heart infusion broth with 5% sucrose and used as acidic challenge in biochemical cycling. Subsequently, surface morphology of the dentine lesion was assessed by scanning electron microscopy, while the lesion depths and mineral loss were assessed by micro-computed tomography. RESULTS: The mean lesion depths in dentine in Groups 1 to 3 were 87.79 ± 16.99 µm, 101.06 ± 10.04 µm and 113.60 ± 16.36 µm, respectively (p = 0.002). The mean amounts of mineral loss in Groups 1 to 3 were 0.82 ± 0.10 g/cm3, 0.89 ± 0.09 g/cm3 and 0.96 ± 0.11 g/cm3, respectively (p = 0.016). No obvious differences in the surface morphology were seen among the groups. CONCLUSION: Addition of strontium-doped bioactive glass-ceramic to fluoride-free toothpaste has potential to reduce formation of dentine lesions.


Assuntos
Cárie Dentária , Cremes Dentais , Idoso , Cariostáticos/farmacologia , Cerâmica/uso terapêutico , Cárie Dentária/prevenção & controle , Suscetibilidade à Cárie Dentária , Dentina , Fluoretos/farmacologia , Humanos , Minerais/farmacologia , Estrôncio/farmacologia , Estrôncio/uso terapêutico , Remineralização Dentária/métodos , Cremes Dentais/uso terapêutico , Microtomografia por Raio-X
11.
Environ Microbiol ; 23(1): 160-173, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107668

RESUMO

A major conundrum in the isolation of prokaryotes from open environments is stochasticity. It is especially difficult to study low abundance groups where very little biological information exists, although single-cell genomics and metagenomics have alleviated some of this bottleneck. Here, we report an approach to capture lignin-utilizing bacteria by linking a physical model to actual organisms. Extracellular enzymes, lignin degradation and cell growth are crucial phenotypes of lignin-utilizing bacteria, but their interrelationships remain poorly understood. In this study, the phenotypes of bacteria isolated from in situ lignocellulose enrichment samples in coastal waters were traced and statistically analysed. It suggested cell growth, dye-decolorizing peroxidase (DyP) and reactive oxygen species (ROS) were significantly correlated with lignin degradation, exhibiting a genus-specific property. The established models enabled us to efficiently capture lignin-utilizing bacteria and rapidly evaluate lignin degradation for Bacillus and Vibrio strains. Through the model, we identified several previously unrecognized marine bacterial lignin degraders. Moreover, it demonstrated that the isolated marine lignin-utilizing bacteria employ a DyP-based system and ROS for lignin depolymerization, providing insights into the mechanism of marine bacterial lignin degradation. Our findings should have implications beyond the capture of lignin-utilizing bacteria, in the isolation of other microorganisms with as-yet-unknown molecular biomarkers.


Assuntos
Bacillus/metabolismo , Lignina/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vibrio/metabolismo , Organismos Aquáticos/metabolismo , Bacillus/isolamento & purificação , Fenômenos Bioquímicos , Oxirredutases/metabolismo , Peroxidases/metabolismo , Metabolismo Secundário/fisiologia , Vibrio/isolamento & purificação
12.
Analyst ; 146(12): 4066-4079, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34048512

RESUMO

Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced graphene oxide (AuNP/PEI/rGO)-modified disposable screen-printed electrode (SPE). A microwave-assisted single-step method was employed for the simultaneous reduction of gold and graphene oxide in a PEI environment to avoid AuNP agglomeration. The crystal structure, chemical composition, optical properties, and interior morphology of the materials were probed by X-ray diffraction, Raman spectroscopy, UV-visible spectrometry, and transmission electron microscopy techniques. To assemble a label-free MMP-1 immunosensor layer-by-layer, 3-mercaptopropionic acid was utilized due to its strong sulfur-gold bonding ability, and its tail end was attached to a carboxyl group, allowing the MMP-1 antibody (anti-MMP-1) to be subsequently cross-linked using the traditional N-(3-dimethylaminopropyl) and N' ethylcarbodiimide hydrochloride method. Differential pulse voltammetry analysis showed a linear relationship with MMP-1 concentration in the range of 1-50 ng ml-1 with an R2 value of ∼0.996 (n = 5, RSD < 5%). This immunosensor was successfully applied for MMP-1 detection in urine, saliva, bovine serum, and cell culture media (HSC-3 & C6) of oral and brain cancers showing results comparable to those of the credible ELISA method.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Neoplasias , Animais , Biomarcadores Tumorais , Bovinos , Técnicas Eletroquímicas , Eletrodos , Ouro , Imunoensaio , Limite de Detecção , Metaloproteinase 1 da Matriz , Polietilenoimina
13.
Oral Dis ; 27(3): 567-576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32677134

RESUMO

OBJECTIVES: This study aimed to clarify the expression profile and significance of lipoxygenases in periodontitis. MATERIALS AND METHODS: The mRNA levels of lipoxygenases in gingival tissues from 14 patients with periodontitis and 14 healthy individuals were determined by real-time PCR, and validated in datasets, GSE16134 and GSE10334, and by Western blotting. Correlation of differentially expressed lipoxygenases with clinical parameters and expression of tumor necrosis factor-α (TNF-α), interleukin-1ß, matrix metalloproteinase (MMP)-8, MMP-9, and receptor activator of nuclear factor-κB ligand (RANKL) was investigated in patients with periodontitis by Spearman's correlation analysis. RESULTS: The expression of ALOX5 (2.1-fold, p < .05), ALOX12B (2.9-fold, p < .001), and ALOX15B (9.4-fold, p < .001) was upregulated in gingival tissues from patients with periodontitis, which was validated by dataset analysis and Western blotting. Positive correlations were observed between ALOX5 and probing depth, and ALOX15B and probing depth and clinical attachment loss. Furthermore, ALOX5 expression was positively correlated with TNF-α, MMP-8, MMP-9, and RANKL expression, and ALOX15B was positively correlated with MMP-8 and RANKL. CONCLUSIONS: Our findings indicated the upregulation of ALOX5 and ALOX15B in periodontitis and suggested that ALOX5 and ALOX15B may be involved in periodontitis pathogenesis, including inflammation, connective tissue destruction, and abnormal bone metabolism.


Assuntos
Lipoxigenases , Periodontite , Gengiva , Humanos , Inflamação , Periodontite/genética , Fator de Necrose Tumoral alfa/genética
14.
J Prosthet Dent ; 126(6): 742-748, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33139056

RESUMO

STATEMENT OF PROBLEM: The immediate loading protocol for 2-implant mandibular overdentures has been widely reported. Nevertheless, the clinical effects reported in different articles are quite different. PURPOSE: The purpose of this systematic review and meta-analysis of randomized controlled trials (RCTs) was to compare the clinical effects of immediate and delayed loading of 2-implant mandibular overdentures. MATERIAL AND METHODS: The review followed the guidelines of Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). PubMed, Cochrane Library, Web of Science, Embase, Scopus, ScienceDirect, CBM, CNKI, and Wan Fang databases were searched electronically for RCTs published before March 25, 2020. Two authors independently conducted literature screening, quality assessment, and data extraction. The outcomes of interest were implant failure rate, marginal bone loss (MBL), implant stability quotient (ISQ), periotest value (PTV), and patient satisfaction. RESULTS: A total of 2498 unduplicated records were identified. After full-text analysis, 7 eligible RCTs were included. All studies were followed for at least 12 months, and the meta-analysis was based on this. The meta-analysis showed that the implant failure rate in the immediate group was higher than that in the delayed group, but there was no statistically significant difference (I2=0%; n=7; risk difference [RD]=0.03; 95% confidence interval [CI]=-0.01 to 0.08). The difference of MBL between immediate and delayed loading was not significant (I2=88%; n=6; mean difference [MD]=-0.04; 95% CI=-0.16 to 0.24). Because of the limited articles reporting on ISQ, PTV, and patient satisfaction, no quantitative analysis was conducted for these outcomes. CONCLUSIONS: Although the implant failure rate was more likely to favor the delayed group, available evidence indicates no statistical difference in implant failure and marginal bone loss between immediate and delayed loading protocols.


Assuntos
Implantes Dentários , Revestimento de Dentadura , Humanos , Implantação Dentária Endóssea , Prótese Dentária Fixada por Implante , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5770-5776, 2020 Dec.
Artigo em Zh | MEDLINE | ID: mdl-33496118

RESUMO

Trace metals deficiency or excess are associated with the etiology and pathogenesis of rheumatoid arthritis(RA). Aconiti Radix Cocta(A) and Paeoniae Radix Alba(B) are commonly used together for the treatment of RA. In this study, we aim to determine anti-arthritic-related metal bioavailability in the compatibility of herb A and B for avoiding metal deficiency or excess, and optimize the combination ratio of herb A and B, accordingly. Anti-arthritic-related metal bioaccessibility were evaluated by in vitro simulator of all gastrointestinal tract(including mouth, stomach, small and large intestines), and the roles of gastrointestinal digestive enzymes and intestinal microflora were investigated. Anti-arthritic-related metal bioavailability was assessed by the affinity adsorption with liposomes. The results indicated that compatibility proportion of corresponding herbal plants, gastrointestinal digestion and microbial metabolic, which could affect metal digestion and absorption. The optimal compatibility proportion of 1 A∶1 B is recommended, according to the dose of anti-arthritic-related metal bioavailability, which is often chosen for clinical practice of RA therapy. Thus, anti-arthritic-related metal bioavailability might be the key active substances for RA treatment.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Paeonia , Disponibilidade Biológica
16.
Environ Microbiol ; 21(5): 1847-1863, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30882973

RESUMO

Lignin is one of the largest carbon reservoirs in the environment, playing an important role in the global carbon cycle. However, lignin degradation in bacteria, especially non-model organisms, has not been well characterized either enzymatically or genetically. Here, a lignin-degrading bacterial strain, Pseudomonas putida A514, was used as the research model. Genomic and proteomic analyses suggested that two B subfamily dye-decolorizing peroxidases (DypBs) were prominent in lignin depolymerization, while the classic O2 -dependent ring cleavage strategy was utilized in central pathways to catabolize lignin-derived aromatic compounds that were funnelled by peripheral pathways. These enzymes, together with a range of transporters, sequential and expression-dose dependent regulation and stress response systems coordinated for lignin metabolism. Catalytic assays indicated these DypBs show unique Mn2+ independent lignin depolymerization activity, while Mn2+ oxidation activity is absent. Furthermore, a high synergy between DypB enzymes and A514 cells was observed to promote cell growth (5 × 1012 cfus/ml) and lignin degradation (27%). This suggested DypBs are competitive lignin biocatalysts and pinpointed limited extracellular secretion capacity as the rate-limiting factor in bacterial lignin degradation. DypB production was, therefore, optimized in recombinant strains and a 14,141-fold increase in DypB activity (56,565 U/l) was achieved, providing novel insights for lignin bioconversion.


Assuntos
Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Catálise , Peroxidases/genética , Proteômica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
17.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30030226

RESUMO

Cell growth and polyhydroxyalkanoate (PHA) biosynthesis are two key traits in PHA production from lignin or its derivatives. However, the links between them remain poorly understood. Here, the transcription levels of key genes involved in PHA biosynthesis were tracked in Pseudomonas putida strain A514 grown on vanillic acid as the sole carbon source under different levels of nutrient availability. First, enoyl-coenzyme A (CoA) hydratase (encoded by phaJ4) is stress induced and likely to contribute to PHA synthesis under nitrogen starvation conditions. Second, much higher expression levels of 3-hydroxyacyl-acyl carrier protein (ACP) thioesterase (encoded by phaG) and long-chain fatty acid-CoA ligase (encoded by alkK) under both high and low nitrogen (N) led to the hypothesis that they likely not only have a role in PHA biosynthesis but are also essential to cell growth. Third, 40 mg/liter PHA was synthesized by strain AphaJ4C1 (overexpression of phaJ4 and phaC1 in strain A514) under low-N conditions, in contrast to 23 mg/liter PHA synthesized under high-N conditions. Under high-N conditions, strain AalkKphaGC1 (overexpression of phaG, alkK, and phaC1 in A514) produced 90 mg/liter PHA with a cell dry weight of 667 mg/liter, experimentally validating our hypothesis. Finally, further enhancement in cell growth (714 mg/liter) and PHA titer (246 mg/liter) was achieved in strain Axyl_alkKphaGC1 via transcription level optimization, which was regulated by an inducible strong promoter with its regulator, XylR-PxylA, from the xylose catabolic gene cluster of the A514 genome. This study reveals genetic features of genes involved in PHA synthesis from a lignin derivative and provides a novel strategy for rational engineering of these two traits, laying the foundation for lignin-consolidated bioprocessing.IMPORTANCE With the recent advances in processing carbohydrates in lignocellulosics for bioproducts, almost all biological conversion platforms result in the formation of a significant amount of lignin by-products, representing the second most abundant feedstock on earth. However, this resource is greatly underutilized due to its heterogeneity and recalcitrant chemical structure. Thus, exploiting lignin valorization routes would achieve the complete utilization of lignocellulosic biomass and improve cost-effectiveness. The culture conditions that encourage cell growth and polyhydroxyalkanoate (PHA) accumulation are different. Such an inconsistency represents a major hurdle in lignin-to-PHA bioconversion. In this study, we traced and compared transcription levels of key genes involved in PHA biosynthesis pathways in Pseudomonas putida A514 under different nitrogen concentrations to unveil the unusual features of PHA synthesis. Furthermore, an inducible strong promoter was identified. Thus, the molecular features and new genetic tools reveal a strategy to coenhance PHA production and cell growth from a lignin derivative.


Assuntos
Lignina/farmacocinética , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Lignina/química , Regiões Promotoras Genéticas , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
18.
Am J Orthod Dentofacial Orthop ; 149(1): 114-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26718385

RESUMO

This case report presents the camouflage treatment that successfully improved the facial profile of a patient with a skeletal Class III malocclusion using bone-borne rapid maxillary expansion and mandibular anterior subapical osteotomy. The patient was an 18-year-old woman with chief complaints of crooked teeth and a protruded jaw. Camouflage treatment was chosen because she rejected orthognathic surgery under general anesthesia. A hybrid type of bone-borne rapid maxillary expander with palatal mini-implants was used to correct the transverse discrepancy, and a mandibular anterior subapical osteotomy was conducted to achieve proper overjet with normal incisal inclination and to improve her lip and chin profile. As a result, a Class I occlusion with a favorable inclination of the anterior teeth and a good esthetic profile was achieved with no adverse effects. Therefore, the hybrid type of bone-borne rapid maxillary expander and a mandibular anterior subapical osteotomy can be considered effective camouflage treatment of a skeletal Class III malocclusion, providing improved inclination of the dentition and lip profile.


Assuntos
Má Oclusão Classe III de Angle/terapia , Osteotomia Mandibular/métodos , Técnica de Expansão Palatina , Prognatismo/terapia , Adolescente , Processo Alveolar/patologia , Dente Pré-Molar/patologia , Cefalometria/métodos , Implantes Dentários , Feminino , Seguimentos , Humanos , Incisivo/patologia , Lábio/patologia , Má Oclusão Classe III de Angle/cirurgia , Maxila/patologia , Miniaturização , Dente Molar/patologia , Procedimentos de Ancoragem Ortodôntica/instrumentação , Desenho de Aparelho Ortodôntico , Técnica de Expansão Palatina/instrumentação , Planejamento de Assistência ao Paciente , Prognatismo/cirurgia , Resultado do Tratamento
19.
PLoS Genet ; 7(10): e1002318, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022280

RESUMO

Thermoanaerobic bacteria are of interest in cellulosic-biofuel production, due to their simultaneous pentose and hexose utilization (co-utilization) and thermophilic nature. In this study, we experimentally reconstructed the structure and dynamics of the first genome-wide carbon utilization network of thermoanaerobes. The network uncovers numerous novel pathways and identifies previously unrecognized but crucial pathway interactions and the associated key junctions. First, glucose, xylose, fructose, and cellobiose catabolism are each featured in distinct functional modules; the transport systems of hexose and pentose are apparently both regulated by transcriptional antiterminators of the BglG family, which is consistent with pentose and hexose co-utilization. Second, glucose and xylose modules cooperate in that the activity of the former promotes the activity of the latter via activating xylose transport and catabolism, while xylose delays cell lysis by sustaining coenzyme and ion metabolism. Third, the vitamin B12 pathway appears to promote ethanologenesis through ethanolamine and 1, 2-propanediol, while the arginine deiminase pathway probably contributes to cell survival in stationary phase. Moreover, by experimentally validating the distinct yet collaborative nature of glucose and xylose catabolism, we demonstrated that these novel network-derived features can be rationally exploited for product-yield enhancement via optimized timing and balanced loading of the carbon supply in a substrate-specific manner. Thus, this thermoanaerobic glycobiome reveals novel genetic features in carbon catabolism that may have immediate industrial implications and provides novel strategies and targets for fermentation and genome engineering.


Assuntos
Proteínas de Bactérias/genética , Hexoses/metabolismo , Pentoses/metabolismo , Proteínas de Ligação a RNA/genética , Thermoanaerobacter/genética , Thermoanaerobacter/metabolismo , Proteínas de Bactérias/metabolismo , Biocombustíveis , Celobiose/metabolismo , Celulose/metabolismo , Etanol/química , Etanol/metabolismo , Etanolamina/química , Etanolamina/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Glicômica , Filogenia , Proteínas de Ligação a RNA/metabolismo , Vitamina B 12/química , Vitamina B 12/metabolismo , Xilose/metabolismo
20.
Mol Ecol Resour ; 24(5): e13950, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38567644

RESUMO

Lignin, as an abundant organic carbon, plays a vital role in the global carbon cycle. However, our understanding of the global lignin-degrading microbiome remains elusive. The greatest barrier has been absence of a comprehensive and accurate functional gene database. Here, we first developed a curated functional gene database (LCdb) for metagenomic profiling of lignin degrading microbial consortia. Via the LCdb, we draw a clear picture describing the global biogeography of communities with lignin-degrading potential. They exhibit clear niche differentiation at the levels of taxonomy and functional traits. The terrestrial microbiomes showed the highest diversity, yet the lowest correlations. In particular, there were few correlations between genes involved in aerobic and anaerobic degradation pathways, showing a clear functional redundancy property. In contrast, enhanced correlations, especially closer inter-connections between anaerobic and aerobic groups, were observed in aquatic consortia in response to the lower diversity. Specifically, dypB and dypA, are widespread on Earth, indicating their essential roles in lignin depolymerization. Estuarine and marine consortia featured the laccase and mnsod genes, respectively. Notably, the roles of archaea in lignin degradation were revealed in marine ecosystems. Environmental factors strongly influenced functional traits, but weakly shaped taxonomic groups. Null mode analysis further verified that composition of functional traits was deterministic, while taxonomic composition was highly stochastic, demonstrating that the environment selects functional genes rather than taxonomic groups. Our study not only develops a useful tool to study lignin degrading microbial communities via metagenome sequencing but also advances our understanding of ecological traits of these global microbiomes.


Assuntos
Ecossistema , Lignina , Metagenômica , Microbiota , Lignina/metabolismo , Microbiota/genética , Microbiota/fisiologia , Metagenômica/métodos , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA