Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077222

RESUMO

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Assuntos
Potexvirus , Viroses , Plantas , Potexvirus/genética , Nicotiana/genética , Fatores de Transcrição
2.
Plant Biotechnol J ; 14(1): 231-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25879277

RESUMO

We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.


Assuntos
Quimera/metabolismo , Epitopos/metabolismo , Nicotiana/genética , Células Vegetais/metabolismo , Potexvirus/fisiologia , Vírion/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Epitopos/imunologia , Epitopos/ultraestrutura , Cobaias , Imunização , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Suspensões , Nicotiana/citologia , Nicotiana/virologia , Vírion/ultraestrutura
3.
Viruses ; 13(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805417

RESUMO

Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virus-based (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants. Interestingly, it was found that the two different strains Foot-and-mouth disease virus (FMDV) VP1 antigens with flexible linker peptides (77 or 82 amino acids) were directly expressed on the BaMV CP, and the chimeric particles self-assembled and continued to express FMDV antigens. The chimeric CP, when directly fused with a large foreign protein (117 amino acids), can self-fold into incomplete virus particles or disks. The physicochemical properties of heterologus peptides N-terminus, complex strand structures of heterologus peptides C-terminus and different flexible linker peptides, can affect the chimera accumulation. Based on these findings, using plant virus-based chimeras to express foreign proteins can increase their length limitations, and engineered plant-made CVP-based vaccines have increasing potential for further development as novel vaccines.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Potexvirus/genética , Antígenos Virais/imunologia , Epitopos/genética , Epitopos/imunologia , Vírus da Febre Aftosa/genética , Vírus de Plantas/imunologia , Potexvirus/imunologia , Vacinas Sintéticas/imunologia , Vírion/genética , Vírion/imunologia
4.
Mol Plant Pathol ; 22(6): 627-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749125

RESUMO

The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.


Assuntos
Proteínas Argonautas/metabolismo , Resistência à Doença/genética , Orchidaceae/genética , Doenças das Plantas/imunologia , Potexvirus/fisiologia , Tobamovirus/fisiologia , Proteínas Argonautas/genética , Orchidaceae/imunologia , Orchidaceae/virologia , Melhoramento Vegetal , Doenças das Plantas/virologia , Potexvirus/genética , Interferência de RNA
5.
Viruses ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34452417

RESUMO

Synergistic interactions among viruses, hosts and/or transmission vectors during mixed infection can alter viral titers, symptom severity or host range. Viral suppressors of RNA silencing (VSRs) are considered one of such factors contributing to synergistic responses. Odontoglossum ringspot virus (ORSV) and cymbidium mosaic virus (CymMV), which are two of the most significant orchid viruses, exhibit synergistic symptom intensification in Phalaenopsis orchids with unilaterally enhanced CymMV movement by ORSV. In order to reveal the underlying mechanisms, we generated infectious cDNA clones of ORSV and CymMV isolated from Phalaenopsis that exerted similar unilateral synergism in both Phalaenopsis orchid and Nicotiana benthamiana. Moreover, we show that the ORSV replicase P126 is a VSR. Mutagenesis analysis revealed that mutation of the methionine in the carboxyl terminus of ORSV P126 abolished ORSV replication even though some P126 mutants preserved VSR activity, indicating that the VSR function of P126 alone is not sufficient for viral replication. Thus, P126 functions in both ORSV replication and as a VSR. Furthermore, P126 expression enhanced cell-to-cell movement and viral titers of CymMV in infected Phalaenopsis flowers and N. benthamiana leaves. Taking together, both the VSR and protein function of P126 might be prerequisites for unilaterally enhancing CymMV cell-to-cell movement by ORSV.


Assuntos
Coinfecção/virologia , Orchidaceae/virologia , Células Vegetais/virologia , Potexvirus/metabolismo , Tobamovirus/metabolismo , Proteínas do Capsídeo/genética , Sinergismo Farmacológico , Interações Microbianas , Potexvirus/genética , Interferência de RNA , RNA Viral/genética , Nicotiana/virologia , Tobamovirus/genética , Replicação Viral
6.
Mol Plant Pathol ; 21(2): 188-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724809

RESUMO

Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post-inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small-interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf-tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21- and 22-nt sizes, with excess positive polarity and under-represented 5'-guanine. While CymMV vsiRNAs mainly derived from RNA-dependent RNA polymerase-coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3'-untranslated region, with a specific hotspot residing in the 3'-terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5-fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA-mediated regulation of the novel targets in double-infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence-defence interactions among CymMV, ORSV and orchids.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Orchidaceae/virologia , Potexvirus/patogenicidade , RNA Interferente Pequeno/metabolismo , Tobamovirus/patogenicidade
7.
Sci Rep ; 9(1): 10230, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308424

RESUMO

Taxonomically distinct Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) are two of the most prevalent viruses worldwide; when co-infecting orchids, they cause synergistic symptoms. Because of the huge economic loss in quality and quantity in the orchid industry with virus-infected orchids, virus-resistant orchids are urgently needed. To date, no transgenic resistant lines against these two viruses have been reported. In this study, we generated transgenic Nicotiana benthamiana expressing various constructs of partial CymMV and ORSV genomes. Several transgenic lines grew normally and remained symptomless after mixed inoculation with CymMV and ORSV. The replication of CymMV and ORSV was approximately 70-90% lower in protoplasts of transgenic lines than wild-type (WT) plants. Of note, we detected extremely low or no viral RNA or capsid protein of CymMV and ORSV in systemic leaves of transgenic lines after co-infection. Grafting experiments further revealed that CymMV and ORSV trafficked extremely inefficiently from co-infected WT stocks to transgenic scions, presumably due to RNA-mediated interference. This study reports the first successful creation of dual resistant transgenic lines against CymMV and ORSV. Our studies shed light on the commercial development of transgenic orchid production to combat the global viral threat.


Assuntos
Nicotiana/genética , Potexvirus/genética , Tobamovirus/genética , Proteínas do Capsídeo/genética , Primers do DNA/genética , Engenharia Genética/métodos , Orchidaceae/genética , Orchidaceae/virologia , Plantas Geneticamente Modificadas/genética , Potexvirus/patogenicidade , Protoplastos , Interferência de RNA , RNA Viral/genética , Tobamovirus/patogenicidade , Replicação Viral/genética
8.
BMC Biotechnol ; 7: 62, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17900346

RESUMO

BACKGROUND: Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. METHODS: We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1. RESULTS: The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-gamma. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. CONCLUSION: Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.


Assuntos
Epitopos/imunologia , Vírus da Febre Aftosa/imunologia , Vírus de Plantas/genética , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Western Blotting , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Chenopodium quinoa/virologia , DNA Recombinante/genética , DNA Recombinante/imunologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Epitopos/genética , Epitopos/metabolismo , Vírus da Febre Aftosa/genética , Vetores Genéticos/genética , Interferon gama/sangue , Microscopia Eletrônica , Modelos Genéticos , Reação em Cadeia da Polimerase , Sasa/virologia , Suínos , Vacinação , Vacinas Virais/genética , Vírion/genética , Vírion/imunologia , Vírion/ultraestrutura
9.
Front Microbiol ; 8: 788, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515719

RESUMO

Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA