Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 888: 163823, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201818

RESUMO

Plastisphere plays crucial role in global carbon and nitrogen cycles and microplastics formation. Global Municipal Solid Waste (MSW) landfills contain 42 % plastic waste, therefore representing one of the most significant plastispheres. MSW landfills are also the third largest anthropogenic methane sources and the important anthropogenic N2O source. Surprisingly, knowledge of microbiota and the associated microbial carbon and nitrogen cycles of landfill plastispheres is very limited. In this study, we characterized and compared the organic chemicals profile, bacterial community structure and metabolic pathway on plastisphere and the surrounding refuse in a large-scale landfill using GC/MS and 16S rRNA genes high-throughput sequencing, respectively. Landfill plastisphere and the surrounding refuse differed in organic chemicals composition. However, abundant phthalate-like chemicals were determined in both environments, implying the plastics additives leaching. Bacterial colonizing on the plastics surface had significantly higher richness than that in the surrounding refuse. Plastic surface and the surrounding refuse had distinct bacterial community composition. Genera of Sporosarcina, Oceanobacillus and Pelagibacterium were detected on the plastic surface with high abundance, while Ignatzschineria, Paenalcaligenes and Oblitimonas were rich in the surrounding refuse. Typical plastics biodegradation genus Bacillus, Pseudomonas and Paenibacillus were detected in both environments. However, Pseudomonas was dominant in plastic surface (up to 88.73 %), whereas Bacillus was rich in the surrounding refuse (up to 45.19 %). For the carbon and nitrogen cycle, plastisphere was predicted to had significant (P < 0.05) higher functional genes involved in carbon metabolism and nitrification, indicating more activated carbon and nitrogen microbial activity on the plastics surface. Additionally, pH was the main driver in shaping the bacterial community composition on plastic surface. These results indicate that landfill plastispheres serve as unique niches for microbial community habitation and function on microbial carbon and nitrogen cycles. These observations invite further study of the landfill plastispheres ecological effect.


Assuntos
Bacillus , Eliminação de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Plásticos , RNA Ribossômico 16S , Instalações de Eliminação de Resíduos , Bactérias , Metano
2.
J Hazard Mater ; 457: 131676, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37263024

RESUMO

Microplastics (MPs) are emerging pollutants. Landfills store up to 42% of worldwide plastic waste and serve as an important source of MPs. However, the study of MPs distribution and the plastic biodegradation potential in landfills is limited. In this study, the distribution of abundance, size, morphology and polymer type of MPs and plastics biodegradation species in refuse samples along landfill depths were extensively investigated within a large-scale landfill in Shenzhen, China. In addition, plastics biodegradation enzymes were evaluated in seven Chinese large-scale landfills leachate. MPs distribution pattern was investigated in all refuse samples. The abundance of MPs in refuse samples varied between 81 and 133 items/g. The size of MPs in all samples varied between 0.03 and 5 mm, and the average sizes were 1.2 mm ± 0.1 mm. The main morphology and polymer type were fragments and cellophane, respectively. Landfill depth was significantly negatively correlated with the relative abundance of MPs size 1-5 mm (p < 0.05) and was positively correlated with the relative abundance of MPs size < 0.2 mm (p < 0.05), suggesting that plastics were broken down during municipal solid waste decomposition. The multiple regression on matrices analysis further showed the landfill depths and plastic morphology significantly impact the MPs distribution. The strains, Lysinibacillus massiliensis (with relative abundance of 1.8%) for low-density polyethylene and polystyrene biodegradation, and Pseudomonas stutzeri (0.1%) for low density polythene and polypropylene biodegradation, were detected on the plastic surface with high relative abundance. Furthermore, 75 plastic degradation species and their associated 31 enzymes (breakdown 24 plastics) were discovered in seven landfills leachate samples.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Polietileno/análise , China , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Biodegradação Ambiental , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA