Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 6(6): 2147-2157, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34014658

RESUMO

Three-dimensional (3D) cell culture based on polymer scaffold provides a promising tool to mimic a physiological microenvironment for drug testing; however, the next-generation cell activity monitoring technology for 3D cell culture is still challenging. Conventionally, drug efficacy evaluation and cell growth heavily rely on cell staining assays, using optical devices or flow cytometry. Here, we report a dual-function polymer scaffold (DFPS) composed of thermosensitive, silver flake- and gold nanoparticle-decorated polymers, enabling conductance change upon cell proliferation or death for in situ cell activity monitoring and drug screening. The cell activity can be quantitatively monitored via measuring the conductance change induced by polymeric network swelling or shrinkage. This novel dual-function system (1) provides a 3D microenvironment to enable the formation and growth of tumor spheroid in vitro and streamlines the harvesting of tumor spheroids through the thermosensitive scaffold and (2) offers a simple and direct quantitative method to monitor 3D cell culture in situ for drug responses. As a proof of concept, we demonstrated that a breast cancer stem cell line MDA-MB-436 was able to form cell spheroids in the scaffold, and the conductance change of the sensor exhibited a linear relationship with cell concentration. To examine its potential in drug screening, cancer spheroids in the cell sensor were treated with paclitaxel (PTX) and docetaxel (DTX), and predicted quantitative evaluation of the cytotoxic effect of drugs was established. Our results indicated that this cell sensing system may hold promising potential in expanding into an array device for high-throughput drug screening.


Assuntos
Nanopartículas Metálicas , Preparações Farmacêuticas , Ouro , Polímeros , Esferoides Celulares
2.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28612952

RESUMO

To meet the increasing demands for ultrasensitivity in monitoring trace amounts of low-abundance early biomarkers or environmental toxins, the development of a robust sensing system is urgently needed. Here, a novel signal cascade strategy is reported via an ultrasensitive polymeric sensing system (UPSS) composed of gold nanoparticle (gNP)-decorated polymer, which enables gNP aggregation in polymeric network and electrical conductance change upon specific aptamer-based biomolecular recognition. Ultralow concentrations of thrombin (10-18 m) as well as a low molecular weight anatoxin (165 Da, 10-14 m) are detected selectively and reproducibly. The biomolecular recognition induced polymeric network shrinkage responses as well as dose-dependent responses of the UPSS are validated using in situ real-time atomic-force microscopy, representing the first instance of real-time detection of biomolecular binding-induced polymer shrinkage in soft matter. Furthermore, in situ real-time confocal laser scanning microscopy imaging reveals the dynamic process of gNP aggregation responses upon biomolecular binding.


Assuntos
Nanopartículas Metálicas , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ouro , Polímeros , Trombina
3.
ACS Nano ; 10(7): 6464-73, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27244244

RESUMO

Fungal keratitis, a severe ocular disease, is one of the leading causes of ocular morbidity and blindness, yet it is often neglected, especially in developing countries. Therapeutic efficacy of traditional treatment such as eye drops is very limited due to poor bioavailability, whereas intraocular injection might cause serious side effects. Herein, we designed and fabricated a hybrid hydrogel-based contact lens which comprises quaternized chitosan (HTCC), silver nanoparticles, and graphene oxide (GO) with a combination of antibacterial and antifungal functions. The hydrogel is cross-linked through electrostatic interactions between GO and HTCC, resulting in strong mechanical properties. Voriconazole (Vor), an antifungal drug, can be loaded onto GO which retains the drug and promotes its sustained release from the hydrogel-based contact lenses. The contact lenses also exhibited good antimicrobial functions in view of glycidyltrimethylammonium chloride and silver nanoparticles. The results from in vitro and in vivo experiments demonstrate that contact lenses loaded with Vor have excellent efficacy in antifungal activity in vitro and could significantly enhance the therapeutic effects on a fungus-infected mouse model. The results indicate that this hydrogel contact lenses-based drug delivery system might be a promising therapeutic approach for a rapid and effective treatment of fungal keratitis.


Assuntos
Lentes de Contato , Hidrogéis , Ceratite/terapia , Nanopartículas Metálicas , Nanomedicina Teranóstica , Animais , Hidrogel de Polietilenoglicol-Dimetacrilato , Camundongos , Prata
4.
Carbohydr Polym ; 92(2): 1367-76, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399166

RESUMO

Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS). PHR and KOH were mixed in acrylic acid solution to provide phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent were investigated. The maximum swelling capacity in distilled water or 0.9 wt.% (weight percent) NaCl solution reached 498 g g(-1) and 65 g g(-1) (water/prepared dry superabsorbent) respectively. Moreover, release behaviours of P and K in SCS/PAA/PHR were also investigated. The results showed that SCS/PAA/PHR possessed excellent sustained-release property of plant nutrient, and the SCS/PAA could improve the P release greatly. Besides, the XPS analysis was employed to study the relationship between PHR and superabsorbent polymer.


Assuntos
Fertilizantes , Minerais/química , Fosfatos/química , Amido/química , Água/química , Absorção , Resinas Acrílicas/química , Preparações de Ação Retardada , Fósforo/química , Potássio/química , Solubilidade , Ácidos Sulfônicos/química , Zea mays/química
5.
Carbohydr Polym ; 90(2): 820-6, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22840007

RESUMO

To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated. The maximum swelling capacity in distilled water and 0.9 wt.% (weight percent) NaCl solution reached 414 gg(-1) and 55 gg(-1) (water/prepared SAP), respectively. The available NPK contents of the combination system were 15.13 mgg(-1), 6.93 mgg(-1) and 52.05 mgg(-1), respectively. Moreover, the release behaviors of NPK in the MSB/PAA/PHR were also studied. The results showed that the MSB/PAA/PHR has outstanding sustained-release plant nutrients property.


Assuntos
Celulose/química , Fertilizantes , Fósforo/química , Polímeros/farmacocinética , Saccharum/química , Água/química , Absorção , Celulose/farmacocinética , Celulose/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Modelos Biológicos , Fósforo/farmacocinética , Fósforo/farmacologia , Polímeros/síntese química , Polímeros/química , Água/metabolismo , Molhabilidade
6.
Int J Biol Macromol ; 50(3): 707-12, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22230613

RESUMO

Tetraethylenepentamine (TEPA) modified sugarcane bagasse (SB), a novel biosorbent (TEPA-MSB), was proved to be an effective adsorbent for anionic dyes due to the introduced functional amino groups. FTIR, TG and DSC analysis were employed to characterize the sorbent. The effects of pH, temperature, contact time and initial concentration of dye on the adsorption of eosin Y were investigated. The experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 399.04 mg/g at 25 °C. And the kinetic data were well described by the pseudo-second-order kinetic model. pH 6 was the optimal pH for eosin Y adsorption, and the maximum adsorption capacity of TEPA-MSB calculated by Langmuir model was 18 times higher than that of SB.


Assuntos
Celulose/química , Corantes/química , Corantes/isolamento & purificação , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/isolamento & purificação , Etilenodiaminas/química , Saccharum/química , Adsorção , Concentração de Íons de Hidrogênio , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA