Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Genet ; 96(5): 439-448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31372974

RESUMO

Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited sensorimotor neuropathies. To clarify the genetic spectrum and clinical profiles in Chinese CMT patients, we enrolled 150 unrelated CMT patients from southeast China. We performed multiplex ligation-dependent probe amplification (MLPA) testing in all patients and next-generation sequencing (NGS) among those patients without PMP22 rearrangements. We identified PMP22 duplications in 40 patients and deletions in 12 patients. In addition, we found 19 novel variants and 36 known mutations in 57 patients. Among these 55 variants, 45 pathogenic or likely pathogenic variants were identified in 48 cases, and 10 variants with uncertain significance were identified in 9 cases. Therefore, we obtained a genetic diagnosis in 63.8% (88/138) of CMT patients and 66.7% (100/150) of all included patients. PMP22, GJB1, and MFN2 are the most common causative genes in CMT1 (demyelinated form), intermediate CMT, and CMT2 (axonal form), respectively. In this study, we identified a higher proportion of intermediate CMT, a relatively high frequency of NDRG1 mutations and clinical features of later onset age in CMT1A patients. Our results broaden the genetic and clinical spectrum of CMT patients, which can help optimize the genetic and clinical diagnosis.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas da Mielina/genética , Adolescente , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , China/epidemiologia , Feminino , Rearranjo Gênico/genética , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Deleção de Sequência/genética , Adulto Jovem
2.
Hum Mutat ; 38(11): 1569-1578, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28776325

RESUMO

Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal-recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 -c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538-1G>A, and duplication of exons 6-8-have been described in CMT4D patients. Here, using targeted next-generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild-type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1-knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a-positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI-LDL or increase the fraction of low-density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.


Assuntos
Proteínas de Ciclo Celular/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Estudos de Associação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação de Sentido Incorreto , Doença de Refsum/diagnóstico , Doença de Refsum/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Feminino , Duplicação Gênica , Técnicas de Silenciamento de Genes , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Fenótipo , Ligação Proteica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Doença de Refsum/metabolismo , Análise de Sequência de DNA , Deleção de Sequência , Adulto Jovem , Proteínas rab4 de Ligação ao GTP/metabolismo
3.
NPJ Genom Med ; 6(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397963

RESUMO

Sorbitol dehydrogenase gene (SORD) has been identified as a novel causative gene of recessive forms of hereditary neuropathy, including Charcot-Marie-Tooth disease type 2 and distal hereditary motor neuropathy (dHMN). Our findings reveal two novel variants (c.404 A > G and c.908 + 1 G > C) and one known variant (c.757delG) within SORD in four Chinese dHMN families. Ex vivo cDNA polymerase chain reaction confirmed that c.908 + 1 G > C variant was associated with impaired splicing of the SORD transcript. In vitro cell functional studies showed that c.404 A > G variant resulted in aggregate formation of SORD and low protein solubility, confirming the pathogenicity of SORD variants. We have provided more evidence to establish SORD as a causative gene for dHMN.

4.
Ann Clin Transl Neurol ; 7(12): 2381-2392, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33136338

RESUMO

OBJECTIVE: To identify and characterize the pathogenicity of novel variants in Chinese patients with Charcot-Marie-Tooth disease. METHODS: Multiplex ligation-dependent probe amplification (MLPA) and whole-exome sequencing (WES) were performed in 30 unrelated CMT patients. Minigene assay was used to verify the effect of a novel splicing variant (c.694+1G>A) on pre-mRNA. Primary fibroblast cell lines were established from skin biopsies to characterize the biological effects of the novel variants p.L26R and p.S169fs. The mitochondrial structure was observed by an electron microscope. The expression level of protein was analyzed by Western Blotting. Mitochondrial dynamics and mitochondrial membrane potential (MMP, Δψm) were analyzed via immunofluorescence study. Mitochondrial ATP levels were analyzed via bioluminescence assay. The rate of oxygen consumption was measured with a Seahorse Bioscience XF-96 extracellular flux analyzer. RESULTS: We identified 10 pathogenic variants in three known CMT related genes, including three novel variants (p.L26R, p.S169fs, c.694+1G>A) and one known pathogenic variant (p.R120W) in GDAP1. Further, we described the clinical features of patients carrying pathogenic variants in GDAP1 and found that almost all Chinese CMT patients with GDAP1 variants present axonal type. The effect of c.694+1G>A on pre-mRNA was verified via minigene splice assay. Cellular biological effects showed ultrastructure damage of mitochondrial, reduced protein levels, different patterns of mitochondrial dynamics, decreased mitochondrial membrane potential (Δψm), ATP content, and defects in respiratory capacity in the patient carrying p.L26R and p.S169fs in GDAP1. INTERPRETATION: Our results broaden the genetic spectrum of GDAP1 and provided functional evidence for mitochondrial pathways in the pathogenesis of GDAP1 variants.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas do Tecido Nervoso/genética , Análise de Sequência de DNA , Adulto , Idoso , Pré-Escolar , China , Feminino , Humanos , Masculino , Linhagem , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA