Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 129, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528554

RESUMO

The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.


Assuntos
Aterosclerose , Emodina , Iridoides , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamento farmacológico , Lipossomos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Emodina/farmacologia , Emodina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol
2.
J Nanobiotechnology ; 21(1): 158, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208681

RESUMO

PCSK9, which is closely related to atherosclerosis, is significantly expressed in vascular smooth muscle cells (VSMCs). Moreover, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) mediated phenotypic transformation, abnormal proliferation, and migration of VSMCs play key roles in accelerating atherosclerosis. In this study, by utilizing the significant advantages of nano-materials, a biomimetic nanoliposome loading with Evolocumab (Evol), a PCSK9 inhibitor, was designed to alleviate atherosclerosis. In vitro results showed that (Lipo + M)@E NPs up-regulated the levels of α-SMA and Vimentin, while inhibiting the expression of OPN, which finally result in the inhibition of the phenotypic transition, excessive proliferation, and migration of VSMCs. In addition, the long circulation, excellent targeting, and accumulation performance of (Lipo + M)@E NPs significantly decreased the expression of PCSK9 in serum and VSMCs within the plaque of ApoE-/- mice.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Camundongos , Animais , Pró-Proteína Convertase 9/metabolismo , Lipossomos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA