Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Oral Health ; 23(1): 808, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891617

RESUMO

OBJECTIVE: This retrospective study analyzed breathing patterns and age subgroups effect on cortical bone quality of the mandible in growing subjects, aiming to explore the application value of facial skeletal pattern combined with cortical bone density detection in early screening diagnosis of mouth breathing. METHODS: One hundred twenty-six participants were divided into four groups: mouth breathing group (7-9, 10-12 years old) and nasal breathing group (7-9, 10-12 years old). The mandibular anterior, middle, and posterior cortical bone mineral density (CBMD), cortical bone width (MCW), ANB, and FMA values were measured. Independent T-test and Mann-Whitney U test were used to compare the measured values. Binary logistic regression was employed to analyze the correlation between measured variables and the children's breathing patterns. ROC analysis was used to determine the ability of the cortical bone density measurements in early screening diagnosis of MB. RESULTS: Mouth breathing had a negative impact on CBMD and MCW of the pre-mandibular (Pog) in subjects aged 7-9 years and also impacted the development of (Pog) and submandibular (Me) sites in subjects aged 10-12 years. Older children in the nasal breathing group have higher CBMD, MCW, and SNB values and lower FMA values. Single-factor and multiple-factor logistic binary regression analysis showed that FMA, MSPogCBMD, MSPogMCW, and ANB are correlated factors for children at risk of mouth breathing. CONCLUSION: Mouth breathing pattern is closely associated with decreased mandibular CBMD and MCW values in children aged 7-12, where the anterior (Pog) and inferior (Me) sites of anterior mandible are more significantly affected. Furthermore, in combination with facial skeletal pattern, it provides a basis for the early warning diagnosis of mouth breathing.


Assuntos
Mandíbula , Respiração Bucal , Humanos , Criança , Adolescente , Estudos Retrospectivos , Radiografia Panorâmica , Mandíbula/diagnóstico por imagem , Densidade Óssea , Osso Cortical , Respiração
2.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936000

RESUMO

Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.


Assuntos
Celulase/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Trichoderma/enzimologia , Biocombustíveis/microbiologia , Fermentação , Glucose/metabolismo , Hidrólise , Trichoderma/metabolismo , Xilose/metabolismo , Zea mays/metabolismo
3.
Microb Cell Fact ; 16(1): 166, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950907

RESUMO

BACKGROUND: Xylan, the major constituent of hemicellulose, is composed of ß-(1,4)-linked xylopyranosyl units that for the backbone, with side chains formed by other chemical moieties such as arabinose, galactose, mannose, ferulic acid and acetyl groups. Acetyl xylan esterases and α-L-arabinofuranosidases are two important accessory enzymes that remove side chain residues from xylan backbones and may act in synergy with other xylanolytic enzymes. Compared with enzymes possessing a single catalytic activity, multifunctional enzymes can achieve lignocellulosic biomass hydrolysis using a less complex mixture of enzymes. RESULTS: Here, we cloned an acetyl xylan esterase (PcAxe) from Penicillium chrysogenum P33 and expressed it in Pichia pastoris GS115. The optimal pH and temperature of the recombinant PcAxe (rPcAxe) for 4-nitrophenyl acetate were 7.0 and 40 °C, respectively. rPcAxe is stable across a broad pH range, retaining 100% enzyme activity om pH 6-9 after a 1 h incubation. The enzyme tolerates the presence of a wide range of metal ions. Sequence alignment revealed a GH62 domain exhibiting α-L-arabinofuranosidase activity with pH and temperature optima of pH 7.0 and 50 °C, in addition to the expected esterase domain. rPcAxe displayed significant synergy with a recombinant xylanase, with a degree of synergy of 1.35 for the hydrolysis of delignified corn stover. Release of glucose was increased by 51% from delignified corn stover when 2 mg of a commercial cellulase was replaced by an equivalent amount of rPcAxe, indicating superior hydrolytic efficiency. CONCLUSIONS: The novel bifunctional enzyme PcAxe was identified in P. chrysogenum P33. rPcAxe includes a carbohydrate esterase domain and a glycosyl hydrolase family 62 domain. This is the first detailed report on a novel bifunctional enzyme possessing acetyl xylan esterase and α-L-arabinofuranosidase activities. These findings expand our current knowledge of glycoside hydrolases and pave the way for the discovery of similar novel enzymes.


Assuntos
Acetilesterase/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Penicillium chrysogenum/enzimologia , Acetilesterase/química , Acetilesterase/genética , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Penicillium chrysogenum/química , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Especificidade por Substrato
4.
Can J Microbiol ; 63(12): 998-1008, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892642

RESUMO

The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and ß-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of ß-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial ß-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of ß-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and ß-glucosidase activities showed that the bacterial GH1 family ß-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families ß-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses ß-glucosidases in compost. Several ß-glucosidase-producing bacteria and fungi identified in this study may represent potential indicators of composting in cellulose degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Esterco/microbiologia , Microbiota/fisiologia , beta-Glucosidase/genética , Animais , Proteínas de Bactérias/genética , Biodiversidade , Bovinos , Celulose/metabolismo , Compostagem , Proteínas Fúngicas/genética , Oryza/microbiologia
5.
Adv Mater ; 36(11): e2307695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150667

RESUMO

Treatment of diabetic wounds is a significant clinical challenge due to the massive infections caused by bacteria. In this study, multifunctional glycol chitosan and polydopamine-coated BiO1-x I (GPBO) nanoparticles (NPs) with near-infrared (NIR) photothermal and photocatalytic abilities are prepared. When infection occurs, the local microenvironment becomes acidic, and the pH-switchable GPBO can target the bacteria of the wound site. The NIR-assisted GPBO treatment exhibits anti-bacterial effects with fast response, high efficiency, and long duration to Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. GPBO achieves excellent photothermal imaging and CT imaging of the mouse subcutaneous abscess model. With the assistance of NIR irradiation, the GPBO promotes the healing of the diabetic wound model with the effects of anti-bacteria, anti-inflammation, the M2 polarization promotion of macrophages, and angiogenesis. This is the first-time report of nano-sized BiO1-x I. The synthesis and selected application for the imaging and targeted therapy of diabetic wounds are presented. This study offers an example of the NP-assisted precise diagnosis and therapy of bacterial infection diseases.


Assuntos
Quitosana , Diabetes Mellitus , Indóis , Nanopartículas , Polímeros , Camundongos , Animais , Bismuto , Oxigênio/farmacologia , Nanopartículas/uso terapêutico , Bactérias , Escherichia coli
6.
Int J Biol Macromol ; 152: 288-294, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105685

RESUMO

Influence of water content on the expression of lignocellulolytic enzymes by Phanerochaete chrysosporium remains unclear. This work compares the enzyme production profiles of P. chrysosporium during solid-state and submerged fermentation. There were 110 and 64 extracellular carbohydrate-active enzymes identified in solid-state and submerged fermentation respectively, among which 57 enzymes were common to both of the secretomes. P. chrysosporium secreted more cellulases (especially lytic polysaccharide monooxygenase) and hemicellulases during solid-state fermentation while the proportion of enzyme containing carbohydrate-binding module was higher for submerged fermentation. Although its activities were weaker, the enzyme cocktail from submerged fermentation was surprisingly more effective in hydrolysis at low substrate loading. This advantage of enzymes from submerged fermentation was mainly attributed to carbohydrate-binding module because more xylanases bound with substrate at the beginning of hydrolysis. These results reveal the influence of fermentation conditions on enzyme produced by P. chrysosporium for the first time and show the importance of carbohydrate-binding module in the hydrolysis process of lignocellulose.


Assuntos
Chrysosporium/enzimologia , Chrysosporium/metabolismo , Fermentação/fisiologia , Phanerochaete/enzimologia , Phanerochaete/metabolismo , Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo
7.
Bioresour Technol ; 257: 54-61, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29482166

RESUMO

Herein, we report the secretome of Penicillium chrysogenum P33 under induction of lignocellulose for the first time. A total of 356 proteins were identified, including complete cellulases and numerous hemicellulases. Supplementing a commercial cellulase with increasing dosage of P33 enzyme cocktail from 1 to 5 mg/g substrate increased the release of reducing sugars from delignified corn stover by 21.4% to 106.8%. When 50% cellulase was replaced by P33 enzyme cocktail, release of reducing sugars was 78.6% higher than with cellulase alone. Meanwhile, glucan and xylan conversion was increased by 37% and 106%, respectively. P33 enzyme cocktail also enhanced commercial cellulase hydrolysis against four different delignified lignocellulosic biomass. These findings demonstrate that mixing appropriate amount of P33 cocktail with cellulase improves polysaccharide hydrolysis, suggesting P33 enzymes have great potential for industrial applications.


Assuntos
Celulase , Lignina , Penicillium chrysogenum , Celulases , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA