Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361636

RESUMO

Naturally-occurring halloysite nanotubes (HNTs) have many advantages for constructing target-specific delivery of phototherapeutic agents. Here, HNTs were labeled with fluorescein isothiocyanate (FITC) and loaded with the type-II photosensitizer indocyanine green (ICG) for phototherapy. HNTs-FITC-ICG was structurally stable due to presence of HNTs as the nanocarrier and protective agent. The nanocarrier was further wrapped with red blood cell membrane (RBCM) to enhance the biocompatibility. The HNTs-FITC-ICG-RBCM nanocarrier show high cytocompatibility and hemocompatibility. Due to the photothermal effect of ICG, a significant temperature rising was achieved by irradiation of the nanocarrier using 808 nm laser. The photothermal temperature rising was used to kill the cancer cells effectively. The HNTs-FITC-ICG-RBCM nanocarrier was further linked with anti-EpCAM to endow it with targeting therapy performance against breast cancer, and the anti-EpCAM-conjugated nanocarrier exhibited significantly tumor-specific accumulation. The RBCM-coated and biocompatible HNTs nanocarrier is a promising candidate for target-specific therapy of cancer.


Assuntos
Membrana Celular/química , Argila/química , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanotubos/química , Neoplasias , Terapia Fototérmica , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Coelhos
2.
Int J Biol Macromol ; 267(Pt 2): 131651, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636746

RESUMO

The plastics derived from fossil fuels for food packaging results in serious environmental problems. Developing environment-friendly materials for food packaging is urgent and essential. In this study, polylactic acid (PLA) composite nanofibers membranes were prepared with good biocompatibility and antibacterial property. Cu2+ loaded in the natural halloysite nanotubes (HNTs) was used for the antibacterial agent. Cu2+ was loaded in the HNTs and was confirmed by the X-ray photoelectron spectroscopy (XPS). PLA nanofibers with different HNTs-Cu content were continuous nanofibers with the nanoscale range. HNTs-Cu entered into the nanofiber successfully. Thermal analysis results showed composite nanofibers had good thermal stability. Composite nanofiber membranes had the good hydrophobic property. HNTs-Cu improved the mechanical property of composite nanofibers than pure PLA nanofibers. Tensile strength and elasticity modulus of composite nanofibers with 4 % HNTs-Cu content were the most outstanding. L929 cells were cultured on the nanofiber membranes for biocompatibility evaluation. Cell viability of nanofiber membranes was above the 90 %. Cell live/dead staining results showed L929 cells was seldom dead on the nanofiber membranes. PLA/HNTs-Cu nanofiber membranes exhibited excellent antibacterial effects on S. aureus and E. coli. The inhibitory rates against S. aureus and E. coli were 98.31 % and 97.80 % respectively. The fresh-keeping effects of nanofiber membranes were evaluated by the strawberry preservation. Strawberries covered by nanofiber membranes exhibited better appearance, lower weight loss and higher firmness than control, PLA and PLA/HNTs groups. It promised that PLA/HNTs-Cu composite nanofiber membranes have the significant potential application for active food packaging.


Assuntos
Antibacterianos , Argila , Cobre , Embalagem de Alimentos , Nanofibras , Nanotubos , Poliésteres , Staphylococcus aureus , Cobre/química , Cobre/farmacologia , Nanofibras/química , Poliésteres/química , Nanotubos/química , Embalagem de Alimentos/métodos , Argila/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Camundongos , Membranas Artificiais , Animais , Linhagem Celular , Resistência à Tração , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Biol Macromol ; 240: 124374, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028616

RESUMO

The leakage during the phase change process and low thermal conductivity of PCMs limit their application area. In this study, Pickering emulsion stabilized with chitin nanocrystals (ChNCs) was used to prepare paraffin wax (PW) microcapsules by forming a dense melamine-formaldehyde resin shell on the surface of droplets. The PW microcapsules were then loaded into the metal foam to endow high thermal conductivity to the composite. The PW emulsions could be formed at low concentrations of ChNCs (0.3 wt%), and the PW microcapsules exhibits a favorable thermal cycling stability and a satisfactory latent heat-storage capacity over 170 J/g. Most importantly, the encapsulation of the polymer shell not only endows the microcapsules with high encapsulation efficiency of 98.8 %, non-leakage properties under prolonged high temperature conditions, but also with high flame retardancy. In addition, the composite of PW microcapsules/copper foam shows satisfactory performance in terms of thermal conductivity, thermal storage capacity and thermal reliability, which can be used for effective temperature regulation of heat generating materials. This study provides new design strategy of natural and sustainable nanomaterials stabilized PCMs, which shows promising application in the field of energy management and thermal equipment temperature regulation.


Assuntos
Quitina , Nanopartículas , Emulsões , Cápsulas , Temperatura Alta , Reprodutibilidade dos Testes , Parafina , Polímeros
4.
Adv Healthc Mater ; 12(1): e2202265, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314398

RESUMO

Uncontrollable bleeding from military conflicts, accidents, and surgical procedures is a major life-threatening factor. Rapid, safe, and convenient hemostasis is critical to the survival of bleeding patients in prehospital care. However, the peel-off of hemostats such as kaolinite sheets from the cotton fibers often poses a risk of distal thrombosis. Here, an efficient clay hemostat of halloysite nanotubes is tightly bound onto commercial cotton fibers, which is capillary mediated by biopolymer alginate with Ca2+ crosslinking. The robust clay nanotube dressing materials maintain high procoagulant activity after harsh water treatment, and only a few residuals of halloysite exist in the wound area. Compared with commercial hemostat QuikClot Combat gauze, halloysite-alginate-cotton composite dressing exhibits hemostatic properties both in vivo and in vitro with high safety. The hemostatic mechanism of the dressing is attributed to activating platelets, locally concentrating clotting components in the nanoclay, halloysite coagulation factors, and alginate cross-linked with Ca2+ . This work inspires robust self-assembly of clay nanotubes on textile fibers and offers a hemostatic material with balanced high hemostatic activity, minimal ingredient loss, and biocompatibility. The robust dressing based on halloysite tightly bounded cotton shows great potential for military, medical, and civil bleeding control with low health risks.


Assuntos
Hemostáticos , Nanotubos , Humanos , Hemostáticos/farmacologia , Argila , Fibra de Algodão , Hemostasia , Hemorragia/terapia , Biopolímeros , Bandagens , Alginatos/farmacologia
5.
Langmuir ; 28(29): 10725-32, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22746205

RESUMO

The fabrication of core-shell structural nanosilica@liposome nanocapsules as a drug delivery vehicle is reported. SiO(2) nanoparticles are encapsulated within liposomes by a W/O/W emulsion approach to form supramolecular assemblies with a core of colloidal particles enveloped by a lipid bilayer shell. A nanosilica core provides charge compensation and architectural support for the lipid bilayer, which significantly improves their physical stability. A preliminary application of these core-shell nanocapsules for hemoglobin (Hb) delivery is described. Through the H-bonding interaction between the hydroxyl groups on nanosilicas and the amino nitrogens of Hb, Hb-SiO(2) nanocomplexes in which the saturated adsorption amount of Hb on SiO(2) is 0.47 g g(-1) are coated with lipids to generate core-shell Hb-SiO(2)@liposome nanocapsules with mean diameters of 60-500 nm and Hb encapsulation efficiency of 48.4-87.9%. Hb-SiO(2)@liposome supramolecular nanovehicles create a mode of delivery that stabilizes the encapsulated Hb and achieves long-lasting release, thereby improving the efficacy of the drug. Compared with liposome-encapsulated Hb and Hb-loaded SiO(2) particles, such core-shell nanovehicles show substantially enhanced release performance of Hb in vitro. This finding opens up a new window of liposome-based formulations as drug delivery nanovehicles for widespread pharmaceutical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hemoglobinas/química , Lipossomos/química , Nanoestruturas/química , Dióxido de Silício/química , Adsorção , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 14(41): 46980-46993, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36201725

RESUMO

A high-performance biodegradable plastic was made from a chitin KOH/urea solution. The solution was transferred into a hydrogel by cross-linking using epichlorohydrin and ethanol immersion, and a chitin bioplastic was finally prepared by drying in a mold at 40 °C. The solution concentration positively impacts viscosity, crystallinity, and smoothness. A 4% chitin bioplastic exhibits high barrier properties, flame retardancy, high-temperature resistance, mechanical properties (tensile strength up to 107.1 MPa), and soil degradation properties. The chitin bioplastic can be completely degraded by microorganisms in 7 weeks. In addition, biosafety tests suggest that chitin is safe for cells and crops (wheat and mung beans). The chitin bioplastic was further applied to containers, straws, cups, and photoprotection, and it was found that the water resistance and transparency were comparable to those of commercial polypropylene plastics. Due to the excellent performance, safety, and sustainability of the chitin bioplastic, it is expected to become a good substitute for conventional fossil fuel-based plastics.


Assuntos
Plásticos Biodegradáveis , Quitina , Polipropilenos , Epicloroidrina , Plásticos , Água , Solo , Hidrogéis , Combustíveis Fósseis , Ureia , Etanol
7.
J Mater Chem B ; 8(5): 838-851, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31830201

RESUMO

Halloysite nanotubes (HNTs), 1D natural tubular nanoparticles, exhibit a high aspect ratio, empty lumen, high adsorption ability, good biocompatibility, and high biosafety, which have attracted researchers' attention in applications of the biomedical area. HNTs can be readily dispersed in water due to their negatively charged surface and good hydrophilicity. The unique rod-like structure and surface properties give HNTs assembly ability into ordered hierarchical structures. In this review, the self-assembly approaches of HNTs including evaporation induced self-assembly by a "coffee-ring" mechanism, shear force induced self-assembly, and electric field force induced self-assembly were introduced. In addition, HNT self-assembly on polymeric substrates and biological substrates including hair, cells, and zebrafish embryos was discussed. These assembly processes are related to noncovalent interactions such as electrostatic, hydrogen bonding, and van der Waals forces or electron-transfer reactions. Moreover, the applications of self-assembled HNT patterns in biomedical areas such as capture of circulating tumor cells, guiding oriented cell growth, controlling cell germination, and delivery of drugs or nutrients were discussed and highlighted. Finally, challenges and future directions of assembly of HNTs were introduced. This review will inspire researchers in the design and fabrication of functional biodevices based on HNTs for tissue engineering, cancer diagnosis/therapy, and personal healthcare products.


Assuntos
Materiais Biocompatíveis/química , Nanotubos/química , Humanos , Teste de Materiais , Tamanho da Partícula , Porosidade , Propriedades de Superfície
8.
Nanoscale ; 12(35): 18225-18239, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32856644

RESUMO

Although poly(l-lactide) (PLLA) based porous scaffolds have been widely fabricated through 3D printing, their poor mechanical properties and osteogenic activity still do not meet the needs of bone tissue repair. Herein, chitin whiskers (CHWs), having outstanding mechanical properties, excellent cell affinity, osteogenic activity, etc. were designed to introduce into the PLLA matrix. Moreover, a trisolvent system, including dichloromethane (DCM), 2-butoxyethanlol (2-Bu) and dibutyl phthalate (DBP), instead of a single solvent system of DCM was chosen to prepare CHW/PLLA (CP) composite inks. Then, the CP porous composite scaffolds were further fabricated via the direct ink writing method. The as-printed CP composite scaffolds have good 3D porous structures with a pore size of 400 ± 14 µm and a porosity of 80 ± 5%. Compared with the pure PLLA scaffold, the CP composite scaffolds showed significantly superior hydrophilicity and compression performance, and also were more conducive to cell adhesion, proliferation, and up-regulating alkaline phosphate activity and calcium deposition due to the presence of CHWs. Moreover, these promoting effects of CHWs are positively related to the content of the whiskers in the range of 0-20 wt%. However, as the content of CHWs further increased to 40 wt%, the compression performance, cell affinity and osteogenic activity of the corresponding 40%CP composite scaffold decreased, which may be attributed to the different microstructure of the scaffold from other composite scaffolds. Interestingly, compared with these scaffolds containing a lower mass content of CHWs, only the 40%CP composite scaffold exhibited significant anti-inflammatory properties. These robust CP composite scaffolds offer a new route for bone tissue engineering application.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Osso e Ossos , Quitina , Tinta , Poliésteres , Porosidade , Vibrissas , Redação
9.
ACS Biomater Sci Eng ; 6(6): 3361-3374, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463181

RESUMO

Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias da Mama/diagnóstico por imagem , Doxorrubicina , Humanos , Imageamento por Ressonância Magnética , Polímeros , Pirróis
10.
Mater Sci Eng C Mater Biol Appl ; 105: 110072, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546464

RESUMO

Halloysite nanotubes (HNTs) are widely used in biomedical field due to their special tubular structure and high reinforcing ability, while hydroxyapatite (HAP) is generally used in tissue engineering owing to its excellent biocompatibility and biological activity. In this work, hydroxyapatite@halloysite nanotubes(HAP@HNTs) hybrid was synthesized via a facial hydrothermal reaction process. The morphology, particle size, specific surface area, and chemical composition of the hybrid were thoroughly characterized by different techniques. Rod-like HAP nanoparticles can be anchored on the outer surface of the clay tubes, which lead to a maximum increase of 4.7 m2/g in the specific surface area of HAP@HNTs over that of HNTs. HAP nanoparticles have little effect on the pores of HNTs, but diffraction peak strength of HNTs is covered by the HAP crystals. HAP@HNTs exhibit improved cytocompatibility and possess osteogenic differentiation ability towards MC3T3-E1 preosteoblasts. Chitosan/HAP@HNTs composite films were then prepared by doping of HAP@HNTs into chitosan by solution mixing. HAP@HNTs can serve as a functional phase which enhances mechanical properties of chitosan films and osteogenic differentiation of MC3T3-E1 cells. This work provides a facial synthesis routine of bioactive HAP@HNTs, which combines the osteogenic activity of HAP and the good mechanical properties of HNTs. HAP@HNTs can be used a novel bone regeneration biomaterial as local delivery systems with improved osteoinductive properties.


Assuntos
Diferenciação Celular , Quitosana/química , Argila/química , Durapatita/química , Membranas Artificiais , Nanopartículas/química , Osteogênese , Animais , Linhagem Celular , Camundongos
11.
Macromol Biosci ; 19(4): e1800419, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565394

RESUMO

Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self-assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10-20% drug loading and can extend the delivery time to 10-100 h. These drug-loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self-assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.


Assuntos
Bactérias/metabolismo , Células Imobilizadas/metabolismo , Argila/química , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanotubos/química , Biodegradação Ambiental , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/uso terapêutico , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico
12.
Water Res ; 134: 153-161, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426032

RESUMO

Quaternary ammonium compounds (QACs) are emerging contaminants with the extensive applications in a variety of fields. However, little is known about their potential impacts on activated sludge and performance of biological wastewater treatment processes. In this work, the effects of benzalkonium chloride (BAC, a kind of QACs) on acute and chronic responses of microorganisms and on MBR performance were systematically investigated. The results showed that a low concentration (0.5-2.0 mg BAC/g SS) caused no significant effects on activated sludge property. In contrast, an elevated concentration of BAC led to severer inhibition on activated sludge and key enzyme activity (e.g., dehydrogenase activity) in both short-term and long-term exposure, thus deteriorating the pollutant removal efficiency. Compared with the control MBR (R1) and the reactor with 0.5 mg/L BAC (R2), the removal efficiency of ammonia in R3 with 5.0 mg/L BAC at identical hydraulic retention time (4.3 h) and sludge retention time (30 d) was decreased, i.e., ammonium removal efficiency in R1∼R3 was 95.4 ±â€¯6.1, 93.4 ±â€¯8.1 and 89.3 ±â€¯17.6%, respectively. Moreover, MBR tests showed that membrane fouling was aggravated in the presence of high-concentration BAC. Long-term exposure to BAC reduced microbial community diversity and enriched the BAC-resistant microbes. For instance, the abundance of Pseudomonas genus in R3 was increased from 0.02% to 14.9% with the increase of operation time. Microbial community structure was changed to resist the environmental stress induced by BAC during long-term exposure, thus decreasing the inhibition effects.


Assuntos
Anti-Infecciosos Locais/farmacologia , Compostos de Benzalcônio/farmacologia , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Amônia/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Membranas Artificiais
13.
Mater Sci Eng C Mater Biol Appl ; 85: 170-181, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407145

RESUMO

Here, we reported a fast, low-cost, and effective fabrication method of large-area and rough halloysite nanotubes (HNTs) coatings by thermal spraying of HNTs ethanol dispersions. A uniform HNTs coating with high transparence is achieved with tailorable surface roughness and thickness. Compared with normal cells, the tumor cells can be captured effectively with high capture yield by the HNTs coatings (expect HeLa cells), which is attributed to the enhanced topographic interactions between HNTs coating and cancer cells. HNTs coating formed from 2.5% ethanol dispersions shows the highest tumor cells capture yeild (90%), which is related to the appropriate roughness and anti-EpCAM conjugation. The capture yield of HNTs coating towards MCF-7 cells can be further improved to 93% within 2h under dynamic shear using a peristaltic pump. The capture yield increases with the incubation time, and the flow rate with 1.25mL/min leads to the maximum capture yield. The HNTs coatings are also effective for capture of tumor cells spiked in artificial blood samples and blood samples from patients with metastatic breast cancer. More than 90% targeted MCF-7 cells and very small amounts of white blood cells are captured by the anti-EpCAM conjugated HNTs coatings from a blood sample. HNTs are further loaded anticancer drug doxorubicin (DOX) and then thermally sprayed into coatings. The MCF-7 cells captured on DOX loaded HNTs coating display significant membrane rupture characteristic and only 3% cell viability after 16h. The high capture efficiency of tumor cells by HNTs coating fabricated by the thermal spraying method makes them show promising applications in clinical circulating tumor cells capture for early diagnosis and monitoring of cancer patients. The high killing ability of the DOX loaded HNTs coating can also be designed as an implantable therapeutic device for preventing tumor metastasis.


Assuntos
Silicatos de Alumínio/química , Materiais Revestidos Biocompatíveis/química , Nanotubos/química , Neoplasias/patologia , Temperatura , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Argila , Doxorrubicina/farmacologia , Humanos , Camundongos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Nanotubos/ultraestrutura
14.
Mater Sci Eng C Mater Biol Appl ; 81: 224-235, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887968

RESUMO

Inorganic nanoparticles have attracted much attentions in gene delivery because of their desirable characteristics including low toxicity, well-controlled characteristics, high gene delivery efficiency, and multi-functionalities. Here, natural occurred halloysite nanotubes (HNTs) were developed as a novel non-viral gene vector. To increase the efficiency of endocytosis, HNTs were firstly shortened into an appropriate size (~200nm). Then polyethyleneimine (PEI) was grafted onto HNTs to bind green fluorescence protein (GFP) labeled pDNA. The structure and physical-chemical properties of PEI grafted HNTs (PEI-g-HNTs) were characterized by various methods. PEI-g-HNTs show lower cytotoxicity than PEI. PEI-g-HNTs are positively charged and can bind DNA tightly at designed N/P ratio from 5:1 to 40:1. PEI-g-HNTs/pDNA complexes show much higher transfection efficiency towards both 293T and HeLa cells compared with PEI/pDNA complexes at the equivalent N/P ratio. The transfection efficiencies of PEI-g-HNTs/pDNA complex towards HeLa cell can reach to 44.4% at N/P ratio of 20. PEI-g-HNTs/pDNA complexes possess a higher GFP protein expression than PEI/pDNA from simple western immunoblots. So, PEI-g-HNTs are potential gene vectors with good biocompatibility and high transfection efficiency, which have promising applications in cancer gene therapy.


Assuntos
Nanotubos , Silicatos de Alumínio , Argila , DNA , Técnicas de Transferência de Genes , Humanos , Polietilenoimina , Transfecção
15.
Mater Sci Eng C Mater Biol Appl ; 81: 280-290, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887974

RESUMO

To synergistically improve the mechanical properties and osteogenic activity of electrospinning poly(l-lactide) (PLLA) membrane, chitosan (CS) nanofibers were firstly introduced to prepare sub-micro and nanofibers interpenetrated PLLA/CS membrane, which was further surface modified with a polydopamine (PDA) layer to obtain PLLA/CS-PDA. Surface morphology, porosity, surface area and hydrophilicity of the obtained fibrous membranes were studied in detail. As compared to pure PLLA, the significant increase in the mechanical properties of the PLLA/CS, and especially of the PLLA/CS-PDA, was confirmed by tensile testing both in dry and wet states. Cells culture results indicated that both the PLLA/CS and PLLA/CS-PDA membranes, especially the latter, were more beneficial to adhesion, spreading and proliferation, as well as up-regulating alkaline phosphate activity and calcium deposition of MC3T3-E1 cells than PLLA membrane. Results suggested there was a synergistic effect of the CS nanofibers and PDA layer on the mechanical properties and osteogenic activity of PLLA membrane.


Assuntos
Nanofibras , Quitosana , Indóis , Poliésteres , Polímeros
16.
Carbohydr Polym ; 156: 235-243, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842818

RESUMO

The aim of this study was to provide a convenient surface modification method for polyurethane (PU) membrane and evaluate its influence on hydrophilicity, antibacterial activity and cell functions, which are the most important factors for wound dressings. For this purpose, chitooligosaccharide (COS) was modified onto the surface of PU membrane based on the self-polymerization of dopamine (DOPA). Surface composition, morphology, hydrophilicity and surface energy of the original and modified PU membranes were characterized. Surface roughness and hydrophilicity of the PU membrane were obviously increased by modified with polydopamine (PDOPA) and COS. Antibacterial experiment against Escherichia coli and Staphylococcus aureus indicated that antibacterial activity of PU membrane increased only slightly by modified with PDOPA, but increased significantly by further modified with COS. Cells culture results revealed that COS-functionalized PU membrane is more beneficial to the adhesion and proliferation of NIH-3T3 cells compared to the original and PDOPA-modified PU membranes.


Assuntos
Indóis/farmacologia , Polímeros/farmacologia , Poliuretanos/farmacologia , Adesivos , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitina/análogos & derivados , Quitina/química , Quitosana , Indóis/toxicidade , Camundongos , Células NIH 3T3 , Oligossacarídeos , Polímeros/toxicidade , Poliuretanos/toxicidade , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 8(12): 7709-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26967539

RESUMO

Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.


Assuntos
Silicatos de Alumínio/química , Separação Celular/métodos , Nanotubos/química , Neoplasias/patologia , Polianetolsulfonato/química , Argila , Humanos , Neoplasias/metabolismo
18.
Int J Biol Macromol ; 78: 23-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25841364

RESUMO

Chitin nanocrystals (CNCs) that were 10-20 nm wide and 100-500 nm long were synthetized via acidolysis and characterized with various methods. To avoid the flocculation of CNCs in the initiator solution during acrylamide polymerization, chitosan was selected as a surface modifier. The chitosan-modified CNCs were employed as multifunctional crosslinkers for the polyacrylamide (PAAm) nanocomposite (NC) hydrogels. The NC gels were tough and stretchable; for example, the maximum tensile strength and the elongation at break of the NC gels were 90 kPa and 3070%, respectively. The dynamic shear modulus of the NC gels was also significantly higher than that of the PAAm. The NC gels were nearly free of residual strain after 2000% elongation. The microstructures of all NC gels were porous, with a pore size of 20-100 µm. The maximum equilibrium swelling degree of the NC gels was 3800%. The improvement in the properties of the NC gels is attributed to the good dispersion of CNCs and the interfacial interactions in the composites. This work developed PAAm NC hydrogels with CNCs for application as absorbent or biomedical material due to the high mechanical properties, high absorb ability and good biocompatibility of CNCs and explored new applications for CNCs as well.


Assuntos
Resinas Acrílicas/química , Quitina/química , Hidrogéis/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Resistência à Tração
19.
Mater Sci Eng C Mater Biol Appl ; 49: 700-712, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686999

RESUMO

In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100-200µm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering.


Assuntos
Alginatos/química , Silicatos de Alumínio/química , Nanotubos/química , Alicerces Teciduais/química , Alginatos/farmacologia , Silicatos de Alumínio/farmacologia , Animais , Células 3T3 BALB , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Argila , Força Compressiva , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Teste de Materiais/métodos , Camundongos , Porosidade , Engenharia Tecidual/métodos
20.
J Biochem ; 157(6): 539-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713409

RESUMO

Influenza A virus (IAV) has been raising public health and safety concerns worldwide. Cyanovirin-N (CVN) is a prominent anti-IAV candidate, but both cytotoxicity and immunogenicity have hindered the development of this protein as a viable therapy. In this article, linker-CVN (LCVN) with a flexible and hydrophilic polypeptide at the N-terminus was efficiently produced from the cytoplasm of Escherichia coli at a >15-l scale. PEGylation at the N-terminal α-amine of LCVN was also reformed as 20 kDa PEGylated linkered Cyanovirin-N (PEG20k-LCVN). The 50% effective concentrations of PEG20k-LCVN were 0.43 ± 0.11 µM for influenza A/HK/8/68 (H3N2) and 0.04 ± 0.02 µM for A/Swan/Hokkaido/51/96 (H5N3), dramatically lower than that of the positive control, Ribavirin (2.88 ± 0.66 × 10(3) µM and 1.79 ± 0.62 × 10(3) µM, respectively). A total of 12.5 µM PEG20k-LCVN effectively inactivate the propagation of H3N2 in chicken embryos. About 2.0 mg/kg/day PEG20k-LCVN increased double the survival rate (66.67%, P = 0.0378) of H3N2 infected mice, prolonged the median survival period, downregulated the mRNA level of viral nuclear protein and decreased (attenuated) the pathology lesion in mice lung. A novel PEGylated CVN derivative, PEG20k-LCVN, exhibited potent and strain-dependent anti-IAV activity in nanomolar concentrations in vitro, as well as in micromolar concentration in vivo.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Proteínas de Bactérias/química , Proteínas de Transporte/química , Embrião de Galinha , Cães , Feminino , Técnicas In Vitro , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA