Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 17: 6413-6425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545221

RESUMO

Background: Breast cancer (BC) has the highest global prevalence among all malignancies in women and the second highest prevalence in the overall population. Paclitaxel (PTX), a tricyclic diterpenoid, is effective against BC. However, its poor solubility in water and the allergenicity of its dissolution medium limited its clinical application. Methods: In this work, we established a multifunctional graphene oxide (GO) tumor-targeting drug delivery system using nanosized graphene oxide (nGO) modified with D-tocopherol polyethylene glycol succinate (TPGS) and arginine-glycine-aspartic acid (RGD) for PTX loading. Results: The obtained RGD-TPGS-nGO-PTX was 310.20±19.86 nm in size; the polydispersity index (PDI) and zeta potential were 0.21±0.020 and -23.42 mV, respectively. The mean drug loading capacity of RGD-TPGS-nGO-PTX was 48.78%. RGD-TPGS-nGO-PTX showed satisfactory biocompatibility and biosafety and had no significant toxic effects on zebrafish embryos. Importantly, it exerted excellent cytotoxicity against MDA-MB-231 cells, reversed multi-drug resistance (MDR) in MCF-7/ADR cells, and showed significant anti-tumor efficacy in tumor-bearing nude mice. Conclusion: These findings strongly suggested that the multifunctional GO tumor-targeting drug delivery system RGD-TPGS-nGO-PTX could be used in clinical settings to improve PTX delivery, reverse MDR and increase the therapeutic efficacy of BC treatment.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Antineoplásicos/farmacologia , Camundongos Nus , Peixe-Zebra , Micelas , Paclitaxel/farmacologia , Sistemas de Liberação de Medicamentos , Vitamina E/farmacologia , Oligopeptídeos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Polietilenoglicóis/farmacologia , Neoplasias/tratamento farmacológico
2.
Int J Nanomedicine ; 15: 10453-10467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380795

RESUMO

PURPOSE: Ginkgolide B (GB) is a terpene lactone derivative of Ginkgo biloba that is believed to function in a neuroprotective manner ideal for treating Parkinson's disease (PD). Despite its promising therapeutic properties, GB has poor bioavailability following oral administration and cannot readily achieve sufficient exposure in treated patients, limiting its clinical application for the treatment of PD. In an effort to improve its efficacy, we utilized poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-PCL) nanoparticles as a means of encapsulating GB (GB-NPs). These NPs facilitated the sustained release of GB into the blood, thereby improving its ability to accumulate in the brain and to treat PD. METHODS AND RESULTS: Using Madin-Darby canine kidney (MDCK) cells, we were able to confirm that these NPs could be taken into cells via multiple nonspecific mechanisms including micropinocytosis, clathrin-dependent endocytosis, and lipid raft/caveolae-mediated endocytosis. Once internalized, these NPs tended to accumulate in the endoplasmic reticulum and lysosomes. In zebrafish, we determined that these NPs were readily able to undergo transport across the chorion, gastrointestinal, blood-brain, and blood-retinal barriers. In a 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal damage model system, we confirmed the neuroprotective potential of these NPs. Following oral administration to rats, GB-NPs exhibited more desirable pharmacokinetics than did free GB, achieving higher GB concentrations in both the brain and the blood. Using a murine PD model, we demonstrated that these GB-NPs achieved superior therapeutic efficacy and reduced toxicity relative to free GB. CONCLUSION: In conclusion, these results indicate that NPs encapsulation of GB can significantly improve its oral bioavailability, cerebral accumulation, and bioactivity via mediating its sustained release in vivo.


Assuntos
Ginkgolídeos/administração & dosagem , Ginkgolídeos/farmacologia , Lactonas/administração & dosagem , Lactonas/farmacologia , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Administração Oral , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cães , Embrião não Mamífero/efeitos dos fármacos , Etilenoglicóis/química , Feminino , Ginkgolídeos/farmacocinética , Humanos , Lactonas/farmacocinética , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Poliésteres/química , Ratos Sprague-Dawley , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA