Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 24(1): 433-440, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112415

RESUMO

Coordinating multiple artificial cellular compartments into a well-organized artificial multicellular system (AMS) is of great interest in bottom-up synthetic biology. However, developing a facile strategy for fabricating an AMS with a controlled arrangement remains a challenge. Herein, utilizing in situ DNA hybridization chain reaction on the membrane surface, we developed a DNA patch-based strategy to direct the interconnection of vesicles. By tuning the DNA patch that generates heterotrophic adhesion for the attachment of vesicles, we could produce an AMS with higher-order structures straightforwardly and effectively. Furthermore, a hybrid AMS comprising live cells and vesicles was fabricated, and we found the hybrid AMS with higher-order structures arouses efficient molecular transportation from vesicles to living cells. In brief, our work provides a versatile strategy for modulating the self-assembly of AMSs, which could expand our capability to engineer synthetic biological systems and benefit synthetic cell research in programmable manipulation of intercellular communications.


Assuntos
Células Artificiais , Fenômenos Biológicos , Membranas/química , DNA/química , Células Artificiais/química , Biologia Sintética
2.
Biomacromolecules ; 23(11): 4607-4616, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321427

RESUMO

Polysaccharide nanocrystals have led to the development of multifunctional and sustainable materials, but most are glucose-based carbohydrates derived from valuable natural sources. Here, we present a top-down strategy that enables one, for the first time, to isolate xylose-based hemicellulose nanocrystals from available industrial biowastes. By leveraging the selective oxidation of alkaline periodate, as high as 34 wt % solid yield is accessible. The hemicellulose nanocrystals exhibit platelet-like shapes (10-20 nm thickness, 30-80 nm wide), crystalline features, and superior dispersibility in water. We also showcase their successful interface applications for one-dimensional (1D) carbon nanotube (CNT) nanoinks and two-dimensional (2D) transition-metal dichalcogenide (TMD) nanozymes, which are comparable to the traditional cellulose nanocrystals. The scalable, low-cost, and sustainable hemicellulose nanocrystals can be envisioned to provide an alternative for glucose-based polysaccharide nanocrystals, as well as hold promise for the high-value utilization of biowastes.


Assuntos
Nanopartículas , Polissacarídeos , Polissacarídeos/química , Celulose/química , Nanopartículas/química , Glucose
3.
Angew Chem Int Ed Engl ; 61(7): e202111151, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873818

RESUMO

Manipulation of cell-cell interactions via cell surface engineering has potential biomedical applications in tissue engineering and cell therapy. However, manipulation of the comprehensive and multiple intercellular interactions remains a challenge and missing elements. Herein, utilizing a DNA triangular prism (TP) and a branched polymer (BP) as functional modules, we fabricate tunable DNA scaffold networks on the cell surface. The responsiveness of cell-cell recognition, aggregation and dissociation could be modulated by aptamer-functionalized DNA scaffold networks with high accuracy and specificity. By regulating the DNA scaffold networks coated on the cell surface, controlled intercellular molecular transportation is achieved. Our tunable network provides a simple and extendible strategy which addresses a current need in cell surface engineering to precisely manipulate cell-cell interactions and shows promise as a general tool for controllable cell behavior.


Assuntos
DNA/química , Redes Neurais de Computação , Polímeros/química , Comunicação Celular , Células HeLa , Células Hep G2 , Humanos
4.
J Am Chem Soc ; 143(1): 232-240, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356224

RESUMO

Cell-cell communication plays a vital role in biological activities; in particular, membrane-protein interactions are profoundly significant. In order to explore the underlying mechanism of intercellular signaling pathways, a full range of artificial systems have been explored. However, many of them are complicated and uncontrollable. Herein we designed an artificial signal transduction system able to control the influx of environmental ions by triggering the activation of synthetic transmembrane channels immobilized on giant membrane vesicles (GMVs). A membrane protein-like stimulator from one GMV community (GMVB) stimulates a receptor on another GMV community (GMVA) to release ssDNA messengers, resulting in the activation of synthetic transmembrane channels to enable the influx of ions. This event, in turn, triggers signal responses encapsulated in the GMVA protocell model. By mimicking natural signal transduction pathways, this novel prototype provides a workable tool for investigating cell-cell communication and expands biological signaling systems in general as well as explores useful platforms for addressing scientific problems which involve materials science, chemistry, and medicine.


Assuntos
Células Artificiais/metabolismo , DNA/metabolismo , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia , DNA/química , Células HeLa , Humanos , Nanoestruturas/química
5.
Luminescence ; 36(3): 642-650, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33171543

RESUMO

Although Ru(bpy)3 2+ -doped silica nanoparticles have been widely explored as the labelling tags for electrochemiluminescence (ECL) sensing different targets, the poor electrical conductive properties of the silica nano-matrix greatly limit their ECL sensitivity. Therefore, a novel scheme to overcome this drawback on Ru(bpy)3 2+ -doped silica nanoparticles ECL is desirable. Here, a new scheme for this purpose was developed based on electrochemically depositing a nanoscale chitosan hydrogel layer on the carbon nanotube (CNT) surface to form chitosan hydrogel shell@CNT core nanocomposites. In this case, the nanoscale chitosan hydrogel layer only formed on the CNT surface due to the superior electrocatalytic effect of CNT on H+ reduction compared with the basic glass carbon electrode. Due to both the superhydrophilic properties and polyelectrolyte features of nanoscale chitosan hydrogel on the CNT surface, chemical affinity as well as the electric conductivity between Ru(bpy)3 2+ -doped silica nanoparticles and CNT were obviously enhanced, and then the ECL effectivity of Ru(bpy)3 2+ inside silica nanoparticles was improved. Furthermore, based on the discriminative interaction of these Ru(bpy)3 2+ -doped silica nanoparticles towards both the ssDNA probes and the ssDNA probe/miRNA complex, as well as the specific adsorption effect of these nanoparticles on the nanoscale chitosan shell@Nafion/CNT core-modified glass carbon electrode, a highly sensitive ECL method for miRNA determination was developed and successfully used to detect miRNA in human serum samples.


Assuntos
Quitosana , Nanopartículas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Polímeros de Fluorcarboneto , Humanos , Medições Luminescentes , Dióxido de Silício
6.
J Am Chem Soc ; 141(16): 6458-6461, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30942594

RESUMO

Inspired by this elegant system of cellular adaptivity, we herein report the rational design of a dynamic artificial adaptive system able to sense and respond to environmental stresses in a unique sense-and-respond mode. Utilizing DNA nanotechnology, we constructed an artificial signal feedback network and anchored it to the surface membrane of a model giant membrane vesicle (GMV) protocell. Such a system would need to both senses incoming stimuli and emit a feedback response to eliminate the stimuli. To accomplish this mechanistically, our DNA-based artificial signal system, hereinafter termed DASsys, was equipped with a DNA trigger-induced DNA polymer formation and dissociation machinery. Thus, through a sequential cascade of stimulus-induced DNA strand displacement, DASsys could effectively sense and respond to incoming stimuli. Then, by eliminating the stimulus, the membrane surface would return to its initial state, realizing the formation of a cyclical feedback mechanism. Overall, our strategy opens up a route to the construction of artificial signaling system capable of maintaining homeostasis in the cellular micromilieu, and addresses important emerging challenges in bioinspired engineering.


Assuntos
Células Artificiais/química , DNA/química , Células Artificiais/metabolismo , Engenharia Celular , DNA/metabolismo , Homeostase , Modelos Moleculares , Nanotecnologia
7.
Int J Biol Macromol ; 254(Pt 1): 127499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287562

RESUMO

Selective fractionation of hemicelluloses is of great significance for realizing high-value application of hemicelluloses and comprehensive utilization of lignocellulosic biomass. Tetramethylammonium hydroxide (TMAH) solvent has been confirmed as a promising solvent to selectively fractionate hemicelluloses from holocellulose. Herein, TMAH solvent was adopted to pretreat poplar thermomechanical pulp (PTMP) for the selective fractionation of hemicelluloses and enhancement of enzymatic hydrolysis performance of residues. The maximal hemicelluloses yield (65.0 %) and excellent cellulose retention rate (93.3 %) were achieved after pretreatment by the 25 wt% TMAH solvent, while the delignification was only 33.9 %. The hemicelluloses fractions could be selectively fractionated with high molecular weights (109,800-118,500 g/mol), the contents of Klason lignin in them were low (3.2-5.9 %), and the dominating structure of them was 4-O-methylglucurono-ß-D-xylan. Compared to the H2SO4 and NaOH methods, the hemicelluloses fractionated by TMAH method exhibited higher yields, more complete structures and higher molecular weights. Furthermore, the crystalline structure of cellulose practically remained stable, and the highest yield of enzymatic hydrolysis glucose was 57.5 %, which was 3.3 times of that of PTMP. The fractionation effectiveness of TMAH solvent was not significantly reduced after repeatedly recycling. This work demonstrated TMAH solvent could selectively fractionate hemicelluloses from PTMP and efficiently promote sustainable poplar-based biorefinery.


Assuntos
Lignina , Polissacarídeos , Populus , Compostos de Amônio Quaternário , Peso Molecular , Lignina/química , Celulose/química , Solventes , Hidrólise , Biomassa
8.
Bioresour Technol ; 369: 128490, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528178

RESUMO

The fractionation of hemicelluloses is a promising method to improve the comprehensive utilization of lignocellulosic biomass. However, the effective fractionation of hemicelluloses is always limited by the structural complexity and easy degradability. In this study, tetramethylammonium hydroxide (TMAH) was developed to fractionate hemicelluloses from poplar holocellulose with high molecular weights and high yields at room temperature. Approximately 90% of hemicelluloses could be dissolved at room temperature in 1 h, and the yield was up to 81.9%. Compared with the fractionation using NaOH solution, the hemicelluloses isolated by TMAH solvent showed a more complete structure and higher purity. Meanwhile, the retention rate of cellulose after treatment with TMAH was up to 90.2%, and the crystal structure of cellulose in the residues was practically unchanged. Moreover, the TMAH solvent could be recycled to fractionate hemicelluloses. The work provides an elegant and significantly efficient method towards hemicelluloses fractionation and cellulose purification.


Assuntos
Celulose , Polissacarídeos , Celulose/química , Temperatura , Polissacarídeos/química , Solventes
9.
Carbohydr Polym ; 272: 118454, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420714

RESUMO

The development of robust solvent systems for cellulose dissolution is of significant importance for cellulose utilization and transformation. Herein, six kinds of novel superbase-based solvents were designed by a combination of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) with pyridine N-oxide (PyO) or 2-picoline-N-oxide (PiO) for dissolution of cellulose. It was observed that the prepared superbase-based solvents (denoted as DBN-PyO-x and DBN-PiO-4) could efficiently dissolve cellulose at mild temperatures (<80 °C). The chemical structure of the prepared superbase-based solvents and the molar ratio of the components significantly affected the solubility of cellulose, and DBN-PyO-4 showed the best performance with a cellulose solubility of 14.1 wt% 70 °C. The systematic study revealed that the good performance of the prepared superbase-based solvents on cellulose dissolution resulted from the synergistic effect of their ability to form hydrogen bonds and their polarizability.


Assuntos
Celulose/química , Solventes/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ligação de Hidrogênio , Picolinas/química , Piridinas/química , Solubilidade , Temperatura , Difração de Raios X/métodos
10.
ACS Appl Mater Interfaces ; 13(26): 30397-30403, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161059

RESUMO

Engineering cell-derived nanovesicles with active-targeting ligands is an important strategy to enhance the targeting efficiency. However, the enhanced binding capability to targeting cells also leads to the binding with nontarget cells that share the same biomarkers. DNA-based logic gate is a kind of molecular system that responds to chemical inputs by generating output signals, and the relationship between the input and the output is based on a certain logic. Thus, the DNA-based logic gate could provide a new approach to improve the delivery efficiency of the nanovesicle. In this work, we developed a DNA logic-gated module that coupled two tumor cell-targeting factors (e.g., low pH and a tumor cell biomarker) in a Boolean manner. Immobilization of this module on the surface of the nanovesicle enables the nanovesicle to sense tumor cell-targeting factors and regard these cues as inputs AND logic gate. With the guide of DNA-based logic gate, gold carbon dots (GCDs) encapsulated within nanovesicles were delivered into target cells, and then the intracellular redox status variation was reflected by fluorescence change of GCDs. Overall, we developed DNA logic-gated nanovesicles that contract different targeting factors into a unique tag for target cells. This facile functionalization strategy can pave the way for constructing smart nanovesicles and would broaden their application in the field of precision medicine and personalized treatment.


Assuntos
Computadores Moleculares , DNA/química , Lipossomos/química , Lógica , Nanoestruturas/química , Motivos de Aminoácidos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Carbono/química , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Corantes Fluorescentes/química , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Estudo de Prova de Conceito , Pontos Quânticos/química , Receptores Proteína Tirosina Quinases/metabolismo
11.
Nat Commun ; 11(1): 978, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080196

RESUMO

In order to maintain tissue homeostasis, cells communicate with the outside environment by receiving molecular signals, transmitting them, and responding accordingly with signaling pathways. Thus, one key challenge in engineering molecular signaling systems involves the design and construction of different modules into a rationally integrated system that mimics the cascade of molecular events. Herein, we rationally design a DNA-based artificial molecular signaling system that uses the confined microenvironment of a giant vesicle, derived from a living cell. This system consists of two main components. First, we build an adenosine triphosphate (ATP)-driven DNA nanogatekeeper. Second, we encapsulate a signaling network in the biomimetic vesicle, consisting of distinct modules, able to sequentially initiate a series of downstream reactions playing the roles of reception, transduction and response. Operationally, in the presence of ATP, nanogatekeeper switches from the closed to open state. The open state then triggers the sequential activation of confined downstream signaling modules.


Assuntos
DNA/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Células Artificiais/química , Materiais Biomiméticos/química , Biomimética/métodos , Homeostase , Nanoestruturas/química , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA