Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Macromol Rapid Commun ; 43(2): e2100449, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624165

RESUMO

Processable microporous organic polymers (MOPs) attract incomparable research interest because their vairous types, such as monoliths and membranes are for practical application. Most processable MOPs usually need harsh conditions such as the use of expensive metal catalysts, specialized stereospecific monomers, etc., which restrict the sustainable and real applications of processable MOPs. Therefore, the economical mass production of processable MOPs remains a formidable challenge. Herein, a novel strategy is reported for constructing processable hypercrosslinked polymers (HCPs) need two steps synthesis of pre-crosslinking and deep-crosslinking using divinylbenzene (DVB) as a self-crosslinking monomer under the catalysis of a small amount of FeCl3 . The resulting HCPs monoliths possess high BET surface area of 1033-1056 m2 g-1 with hierarchical porosity, and show excellent mechanical strength up to 65 MPa. It is, to the best of authors' knowledge, the first report of using aromatic vinyl monomers as self-crosslinking monomers to generate HCPs monoliths with high surface area, yielding no by-products, and high mechanical strength.


Assuntos
Polímeros , Catálise , Porosidade
2.
Fish Shellfish Immunol ; 60: 520-528, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836720

RESUMO

In the present study, the effect of dietary supplementation of poly-ß-hydroxybutyrate (PHB) on the growth performance, intestinal digestive and immune function, intestinal short-chain fatty acids (SCFA) content and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) was evaluated. The shrimp was fed for 35 days with four different diets: 0%, 1%, 3% and 5% PHB supplemented feed. The results indicated that supplementation of PHB significantly increased the growth performance of the shrimp, and the feed conversion rate (FCR) in 3%PHB treatment group was significantly lower than the control (P < 0.05). The intestinal amylase, lipase and trypsin activity in the three PHB treatment groups were all significantly higher than that of the control (P < 0.05), but the pepsin activity were only significantly affected by 3%PHB treatment (P > 0.05). The activities of intestinal immune enzymes such as total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) was significantly induced by 3%PHB treatment (P < 0.05), while lysozyme (LSZ) activity was significantly affected by 5%PHB treatment and nitric oxide (NO) content was significantly induced in three PHB treatments. Meanwhile, PHB induced significantly the expression level of intestinal heat shock protein 70 (HSP70), Toll and immune deficiency (Imd) gene. HE staining showed that PHB induced the intestinal health status of L. vannamei. Intestinal SCFA content analysis revealed that the content of propionic and butyric acid of 3%PHB treatment were significantly higher than that of the control (P < 0.05). Body composition analysis showed that the crude protein in 3% and 5%PHB treatments, and the crude lipid in 1% and 5%PHB treatments were all significantly higher than the control (P < 0.05). These results revealed that PHB could improve the growth performance, modulated intestinal digestive and immune function, increased intestinal SCFA content and body composition in L. vannamei, and the optimum dietary PHB requirement by L. vannamei was estimated at 3% (w/w) diet.


Assuntos
Suplementos Nutricionais , Hidroxibutiratos , Imunidade Inata/imunologia , Penaeidae/fisiologia , Poliésteres , Ração Animal/análise , Animais , Composição Corporal , Dieta , Ácidos Graxos Voláteis/metabolismo , Nível de Saúde , Intestinos/fisiologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia
3.
Adv Mater ; 36(30): e2404888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38738587

RESUMO

Confining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment. Herein an in situ metathesis promoted doping strategy is presented, namely, mixing ≈10-3 weight ratio of organic-emitter multicarboxylates with inorganic salt reactants, followed by metathesis reactions to prepare a series of hydrophilic but water-insoluble organic-inorganic doping afterglow materials. This strategy leads to the formation of edible long-afterglow photoluminescent materials with superior biocompatibility and excellent bioimaging effect. The phosphorescence quantum yield of the materials can reach dozens of percent (the highest case: 66.24%), together with the photoluminescent lifetime lasting for coupes of seconds. Specifically, a long-afterglow barium meal formed by coronene salt emitter and BaSO4 matrix is applied into animal experiments by gavage, and bright stomach afterglow imaging is observed by instruments or mobile phone after ceasing the photoexcitation with deep tissue penetration. This strategy allows a flexible dosage of the materials during bioimaging, facilitating the development of real-time probing and theranostic technology.


Assuntos
Materiais Biocompatíveis , Animais , Camundongos , Materiais Biocompatíveis/química , Substâncias Luminescentes/química , Humanos , Imagem Óptica
4.
ACS Appl Mater Interfaces ; 15(4): 6142-6155, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637977

RESUMO

Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.


Assuntos
Materiais Biocompatíveis , Humanos , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Propriedades de Superfície
5.
J Hazard Mater ; 451: 131055, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870126

RESUMO

The widely applied aromatic nitration in modern industry leads to toxic p-nitrophenol (PNP) in environment. Exploring its efficient degradation routes is of great interests. In this study, a novel four-step sequential modification procedure was developed to increase the specific surface area, functional group, hydrophilicity, and conductivity of carbon felt (CF). The implementation of the modified CF promoted reductive PNP biodegradation, attaining 95.2 ± 0.8% of removal efficiency with less accumulation of highly toxic organic intermediates (e.g., p-aminophenol), compared to carrier-free and CF-packed biosystems. The constructed anaerobic-aerobic process with modified CF in 219-d continuous operation achieved further removal of carbon and nitrogen containing intermediates and partial mineralization of PNP. The modified CF promoted the secretion of extracellular polymeric substances (EPS) and cytochrome c (Cyt c), which were essential components to facilitate direct interspecies electron transfer (DIET). Synergistic relationship was deduced that glucose was converted into volatile fatty acids by fermenters (e.g., Longilinea and Syntrophobacter), which donated electrons to the PNP degraders (e.g., Bacteroidetes_vadinHA17) through DIET channels (CF, Cyt c, EPS) to complete PNP removal. This study proposes a novel strategy using engineered conductive material to enhance the DIET process for efficient and sustainable PNP bioremediation.


Assuntos
Carbono , Elétrons , Fibra de Carbono , Biodegradação Ambiental , Nitrofenóis/metabolismo
6.
Int J Pharm ; 599: 120418, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647414

RESUMO

Nanocrystals (NCs) enable the delivery of poorly water-soluble drugs with improved dissolution and bioavailability. However, their uncontrolled release and instability make targeted delivery challenging. Herein, a nano-in-nano delivery system composed of a drug nanocrystal core and liposome shell (NC@Lipo) is presented, which merges the advantages of drug nanocrystals (high drug loading) and liposomes (easy surface functionalization and high stability) for targeted delivery of hydrophobic drugs to tumors. CHMFL-ABL-053 (053), a hydrophobic drug candidate discovered by our group, was employed as a model drug to demonstrate the performance of NC@Lipo delivery system. Surface PEGylated (053-NC@PEG-Lipo) and folic acid-functionalized (053-NC@FA-Lipo) formulations were fabricated by wet ball milling combined with probe sonication. 053-NC@Lipo enabled high drug loading (up to 19.51%), considerably better colloidal stability, and longer circulation in vivo than 053-NC. Compared with free 053, 053-NC@PEG-Lipo and 053-NC@FA-Lipo exhibited higher tumor accumulation and considerably better in vivo antitumor efficacy in K562 xenograft mice with tumor growth inhibition rate (TGI) of up to 98%. Additionally, more effective tumor cell targeting in vitro and higher TGI in vivo were achieved with 053-NC@FA-Lipo. The NC@Lipo strategy may contribute to the targeted delivery of poorly water-soluble drugs with high drug loading, high stability, and tailorable surface, and has potential for the development of more efficient nanocrystal- and liposome-based formulations for commercial and clinical applications. It may also provide new opportunities for potential clinical application of candidate 053.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Animais , Sistemas de Liberação de Medicamentos , Lipossomos , Camundongos , Água
7.
Biomaterials ; 279: 121208, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749074

RESUMO

The dominant source of thromboembolism in heart comes from the left atrial appendage (LAA). An occluder can close LAA and significantly reduce the risk of strokes, particularly for those patients with atrial fibrillation. However, it is technically challenging to fabricate an LAA occluder that is appropriate for percutaneous implantation and can be rapidly endothelialized to accomplish complete closure and avoid severe complication. Hypothesizing that a fast migration rate of endothelial cells on the implant surface would lead to rapid endothelialization, we fabricated an LAA occlusion device for interventional treatment with a well-designed 3D architecture and a nanoscale 2D coating. Through screening of biomaterials surfaces with cellular studies in vitro including cell observations, qPCR, RNA sequencing, and implantation studies in vivo, we revealed that a titanium-nitrogen nanocoating on a NiTi alloy promoted high migration rate of endothelial cells on the surface. The effectiveness of this first nanocoating LAA occluder was validated in animal experiments and a patient case, both of which exhibited successful implantation, fast sealing and long-term safety of the device. The mechanistic insights gained in this study will be useful for the design of medical devices with appropriate surface modification, not necessarily for improved cell adhesion but sometimes for enhanced cell migration.


Assuntos
Apêndice Atrial , Cardiopatias , Dispositivo para Oclusão Septal , Animais , Apêndice Atrial/diagnóstico por imagem , Materiais Biocompatíveis , Movimento Celular , Ecocardiografia Transesofagiana , Células Endoteliais , Humanos , Resultado do Tratamento
8.
Biomaterials ; 274: 120851, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965798

RESUMO

The next-generation closure device for interventional treatment of congenital heart disease is regarded to be biodegradable, yet the corresponding biomaterial technique is still challenging. Herein, we report the first fully biodegradable atrial septal defect (ASD) occluder finally coming into clinical use, which is made of biodegradable poly(l-lactic acid) (PLLA). We characterized the physico-chemical properties of PLLA fibers as well as the raw polymer and the operability of the as-fabricated occluders. Cell behaviors on material were observed, and in vivo fiber degradation and inflammatory responses were examined. ASD models in piglets were created, and 44 PLLA ASD occluders were implanted via catheter successfully. After 36 months, the PLLA ASD occluders almost degraded without any complications. The mechanical properties and thickness between newborn and normal atrial septum showed no significant difference. We further accomplished the first clinical implantation of the PLLA ASD occluder in a four-year boy, and the two-year follow-up up to date preliminarily indicated safety and feasibility of such new-generation fully biodegradable occluder made of synthetic polymers.


Assuntos
Doenças Cardiovasculares , Comunicação Interatrial , Dispositivo para Oclusão Septal , Animais , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/cirurgia , Humanos , Recém-Nascido , Masculino , Polímeros , Desenho de Prótese , Suínos , Resultado do Tratamento
9.
Biofabrication ; 11(3): 035009, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30865936

RESUMO

While various porous scaffolds have been developed, the focused study about which structure leads to better mechanics is rare. In this study, we designed porous scaffolds with tetragonal, hexagonal and wheel-like structures under a given porosity, and fabricated corresponding poly(lactic acid) (PLA) scaffolds with three-dimensional printing. High-resolution micro-computed tomography was carried out to calculate their experimental porosity and confirm their high interconnectivity. The theoretical and experimental compressive properties in the longitudinal direction were characterized by finite element analysis method and electromechanical universal testing system, respectively. Thereinto, the scaffold with the tetragonal structure exhibited higher mechanical strength both theoretically and experimentally. Creep and stress relaxation behaviors of the scaffolds revealed that the tetragonal scaffold had less significant viscoelasticity. Immersion dynamic mechanical analysis was performed to test their cycle-loading fatigue behaviors in the simulated body fluid at 37 °C; the tetragonal scaffold exhibited the latest fatigue beginning point at 4400 cycles, which indicated a better anti-fatigue performance; the hexagonal and wheel-like ones exhibited the middle and earliest fatigue beginning points at 3200 and 2500 cycles, respectively. What is more, cytocompatibility and histocompatibility of the scaffolds with all of the structures were confirmed by cell counting kit-8 assay in vitro and three-month subcutaneous implantation in rats in vivo. Hence, the key property difference of the three examined structures comes from their mechanics; the tetragonal structure exhibited better mechanics in the longitudinal direction examined in this study, which could be taken into consideration in design of a porous scaffold for tissue engineering and regeneration.


Assuntos
Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Animais Recém-Nascidos , Força Compressiva , Elasticidade , Modelos Animais , Implantação de Prótese , Ratos Sprague-Dawley , Estresse Mecânico , Tela Subcutânea/fisiologia , Viscosidade , Microtomografia por Raio-X
10.
ACS Appl Mater Interfaces ; 10(1): 182-192, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29243907

RESUMO

The new principle and technique to tune biodegradation rates of biomaterials is one of the keys to the development of regenerative medicine and next-generation biomaterials. Biodegradable stents are new-generation medical devices applied in percutaneous coronary intervention, etc. Recently, both corrodible metals and degradable polymers have drawn much attention in biodegradable stents or scaffolds. It is, however, a dilemma to achieve good mechanical properties and appropriate degradation profiles. Herein, we put forward a metal-polymer composite strategy to achieve both. Iron stents exhibit excellent mechanical properties but low corrosion rate in vivo. We hypothesized that coating of biodegradable aliphatic polyester could accelerate iron corrosion due to the acidic degradation products, etc. To demonstrate the feasibility of this composite material technique, we first conducted in vitro experiments to affirm that iron sheet corroded faster when covered by polylactide (PLA) coating. Then, we fabricated three-dimensional metal-polymer stents (MPS) and implanted the novel stents in the abdominal aorta of New Zealand white rabbits, setting metal-based stents (MBS) as a control. A series of in vivo experiments were performed, including measurements of residual mass and radial strength of the stents, histological analysis, micro-computed tomography, and optical coherence tomography imaging at the implantation site. The results showed that MPS could totally corrode in some cases, whereas iron struts of MBS in all cases remained several months after implantation. Corrosion rates of MPS could be easily regulated by adjusting the composition of PLA coatings.


Assuntos
Stents , Implantes Absorvíveis , Animais , Materiais Biocompatíveis , Ferro , Metais , Polímeros , Coelhos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA