Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1336239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322258

RESUMO

CpG oligodeoxynucleotides (CpG ODNs) boost the humoral and cellular immune responses to antigens through interaction with Toll-like receptor 9 (TLR9). These CpG ODNs have been extensively utilized in human vaccines. In our study, we evaluated five B-type CpG ODNs that have stimulatory effects on pigs by measuring the proliferation of porcine peripheral blood mononuclear cells (PBMCs) and assessing interferon gamma (IFN-γ) secretion. Furthermore, this study examined the immunoenhancing effects of the MF59 and CpG ODNs compound adjuvant in mouse and piglet models of porcine epidemic diarrhea virus (PEDV) subunit vaccine administration. The in vitro screening revealed that the CpG ODN named CpG5 significantly stimulated the proliferation of porcine PBMCs and elevated IFN-γ secretion levels. In the mouse vaccination model, CpG5 compound adjuvant significantly bolstered the humoral and cellular immune responses to the PEDV subunit vaccines, leading to Th1 immune responses characterized by increased IFN-γ and IgG2a levels. In piglets, the neutralizing antibody titer was significantly enhanced with CpG5 compound adjuvant, alongside a considerable increase in CD8+ T lymphocytes proportion. The combination of MF59 adjuvant and CpG5 exhibits a synergistic effect, resulting in an earlier, more intense, and long-lasting immune response in subunit vaccines for PEDV. This combination holds significant promise as a robust candidate for the development of vaccine adjuvant.


Assuntos
Polissorbatos , Vírus da Diarreia Epidêmica Suína , Esqualeno , Animais , Suínos , Camundongos , Humanos , Leucócitos Mononucleares , Adjuvantes Imunológicos , Imunidade , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Oligodesoxirribonucleotídeos
2.
Anal Chim Acta ; 1160: 338447, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894967

RESUMO

Drug-induced kidney injury causes structural or functional abnormalities of kidney, seriously affecting clinical practice and drug discovery. However, rapid and effective identification of nephrotoxic drug mechanisms is yet a challenging task arising from the complexity and diversity of various nephrotoxic mechanisms. Herein, we have constructed a polydopamine-polyethyleneimine/quantum dots sensor to instantaneously read out the nephrotoxic drugs mechanisms based on the disparate cell surface phenotypes. Cell surface components induced by multiple nephrotoxic drugs can change the fluorescence emission of multicolor quantum dots, generating their corresponding fluorescent fingerprints. The fluorescence response signatures induced by different nephrotoxic agents are gained with 84% accuracy via linear discriminant analysis. Furthermore, taking the time-toxicity relationship into consideration, dynamic fluorescent fingerprint is obtained through continuous monitoring the progress of renal cell damage, achieving 100% precise classification for nephrotoxic mechanisms of four types of antibiotics. Notably, the fluorescent fingerprint-based high-throughput sensor has been demonstrated by successfully distinguishing nephrotoxic drugs in seconds, employing a promising protocol to discriminate the specific mechanism of nephrotoxic drugs, as well as drug safety evaluation.


Assuntos
Preparações Farmacêuticas , Pontos Quânticos , Antibacterianos , Fluorescência , Polietilenoimina , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência
3.
Sci Rep ; 6: 23605, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009476

RESUMO

Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in ß-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.


Assuntos
Aminoácidos/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Sequência de Aminoácidos , Biomassa , Domínio Catalítico , Sequência Conservada , Glicosídeo Hidrolases/genética , Ligantes , Modelos Moleculares , Família Multigênica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA