Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(29): e202405030, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695837

RESUMO

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.


Assuntos
Antibacterianos , Química Click , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Polimerização , Compostos de Piridínio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/síntese química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química
2.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
3.
Chem Rev ; 121(8): 4309-4372, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33844906

RESUMO

Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?


Assuntos
Hidrogéis/química , Polímeros/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Engenharia Tecidual
4.
Proc Natl Acad Sci U S A ; 114(9): 2200-2205, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202725

RESUMO

Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais , Elastômeros/síntese química , Escherichia coli/química , Proteínas de Fluorescência Verde/genética , Hidrogéis/síntese química , Acil-Butirolactonas/análise , Acil-Butirolactonas/farmacologia , Transporte Biológico , Células Imobilizadas/metabolismo , Engenharia Química/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/análise , Isopropiltiogalactosídeo/farmacologia , Percepção de Quorum
5.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717328

RESUMO

Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.


Assuntos
Germinação , Proteínas de Plantas/genética , Polietilenoglicóis/toxicidade , Proteômica , Sementes/fisiologia , Estresse Fisiológico , Zea mays/anatomia & histologia , Zea mays/fisiologia , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Marcação por Isótopo , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos
6.
Langmuir ; 31(35): 9665-74, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26301434

RESUMO

Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of ß-cyclodextrin (ß-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and ß-CD. ß-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-ß-CD (EDA-ß-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the ß-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.


Assuntos
Antibacterianos/química , Ciclodextrinas/química , Polímeros/química , Sulfonas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polimerização , Polímeros/síntese química , Polímeros/farmacologia , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/farmacologia , Propriedades de Superfície
7.
Langmuir ; 30(49): 14905-15, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25420156

RESUMO

In this study, we proposed a catechol chemistry inspired approach to construct surface self-cross-linked polymer nanolayers for the design of versatile biointerfaces. Several representative biofunctional polymers, P(SS-co-AA), P(SBMA-co-AA), P(EGMA-co-AA), P(VP-co-AA), and P(MTAC-co-AA), were first synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the catecholic molecules (dopamine, DA) were conjugated to the acrylic acid (AA) units by the facile carbodiimide chemistry. Then, the catechol (Cat) group conjugated biofunctional polymers, named PSS-Cat, PSBMA-Cat, PEGMA-Cat, PVP-Cat, and PMTAC-Cat, were applied for the construction of self-cross-linked nanolayers on polymeric substrates via the pH induced catechol cross-linking and immobilization. The XPS spectra, surface morphology, and wettability gave robust evidence that the catechol conjugated polymers were successfully coated, and the coated substrates possessed increased surface roughness and hydrophilicity. Furthermore, the systematic in vitro investigation of protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), cell viability, and antibacterial ability confirmed that the coated nanolayers conferred the substrates with versatile biological performances. The PSS-Cat coated substrate had low blood component activation and excellent anticoagulant activity; while the PEGMA-Cat and PSBMA-Cat showed ideal resistance to protein fouling and inhibition of platelet activation. The PSS-Cat and PVP-Cat coated substrates exhibited promoted endothelial cell proliferation and viability. The PMTAC-Cat coated substrate showed an outstanding activity on bacterial inhibition. In conclusion, the catechol chemistry inspired approach allows the self-cross-linked nanolayers to be easily immobilized on polymeric substrates with the stable conformation and multiple biofunctionalities. It is expected that this low-cost and facile bioinspired coating system will present great potential in creating novel and versatile biointerfaces.


Assuntos
Catecóis/química , Nanopartículas/química , Polímeros/química , Adsorção , Animais , Bactérias/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Microscopia Eletrônica de Varredura , Polímeros/síntese química , Polímeros/farmacologia , Soroalbumina Bovina/química , Propriedades de Superfície
8.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 773-785, 2024 Mar 25.
Artigo em Zh | MEDLINE | ID: mdl-38545976

RESUMO

The utilization of polyethylene terephthalate (PET) has caused significant and prolonged ecological repercussions. Enzymatic degradation is an environmentally friendly approach to addressing PET contamination. Hydrolysis of mono(2-hydroxyethyl) terephthalate (MHET), a competitively inhibited intermediate in PET degradation, is catalyzed by MHET degrading enzymes. Herein, we employed bioinformatic methods that combined with sequence and structural information to discover an MHET hydrolase, BurkMHETase. Enzymatic characterization showed that the enzyme was relatively stable at pH 7.5-10.0 and 30-45 ℃. The kinetic parameters kcat and Km on MHET were (24.2±0.5)/s and (1.8±0.2) µmol/L, respectively, which were similar to that of the well-known IsMHETase with higher substrate affinity. BurkMHETase coupled with PET degradation enzymes improved the degradation of PET films. Structural analysis and mutation experiments indicated that BurkMHETase may have evolved specific structural features to hydrolyze MHET. For MHET degrading enzymes, aromatic amino acids at position 495 and the synergistic interactions between active sites or distal amino acids appear to be required for MHET hydrolytic activity. Therefore, BurkMHETase may have substantial potential in a dual-enzyme PET degradation system while the bioinformatic methods can be used to broaden the scope of applicable MHETase enzymes.


Assuntos
Hidrolases , Plásticos , Hidrolases/metabolismo , Temperatura , Hidrólise , Polietilenotereftalatos/metabolismo
9.
Int J Biol Macromol ; 275(Pt 1): 133399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945323

RESUMO

The development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone. The dynamic blood clotting index demonstrated that the nanocomposite film with a DC addition of 1.0 wt% exhibited significantly superior hemostatic properties compared to both pure DC powder or commercial hemostatic agent Yunnan Baiyao. This improvement was primarily attributed to proper blood affinity, increased porosity, enhanced adhesion of platelets and erythrocytes, as well as the accelerated activation of coagulation factors and platelets. Under the synergistic effect of Pal and DC, the nanocomposite film displayed suitable tensile strength (20.58 MPa) and elongation at break (47.29 %), which may be due to the strong intermolecular hydrogen bonding and electrostatic interaction between Pal/DC and macropolymers. Notably, the nanocomposite film exhibited remarkable antibacterial effectiveness and desirable cytocompatibility, as well as the capability of promoting wound healing in vitro. Taken together, the nanocomposite film synergized with Pal and DC is expected to be an efficacious and suitable wound dressing.


Assuntos
Quitosana , Hemostasia , Hemostáticos , Compostos de Magnésio , Nanocompostos , Povidona , Compostos de Silício , Cicatrização , Nanocompostos/química , Quitosana/química , Povidona/química , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Compostos de Silício/química , Compostos de Silício/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Hemostasia/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Humanos , Coagulação Sanguínea/efeitos dos fármacos , Bandagens
10.
Food Chem ; 456: 140051, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38901078

RESUMO

With the aim of effectively improving the performance of bio-friendly food packaging and circumventing the hazards associated with petroleum-based plastic food packaging, composite films of corn starch and polyvinyl alcohol were prepared using a new method that involved chemical cross-linking of glutaraldehyde and blending with cinnamon essential oil nanoemulsion (CNE). Glutaraldehyde and CNE enhance the film's network structure by chemical bonding and hydrogen bonding, respectively. This results in improved surface smoothness, mechanical properties, and UV shielding ability of the film. However, the films' surface hydrophilicity increased as a result of CNE, which is harmful for food preservation in high humidity. Overall, glutaraldehyde and CNE have a synergistic effect on some of the properties of the film which is mainly attributed to the films' structure improvement. The films have great potential for preparing flexible and UV-shielding films and offer new ideas for developing biodegradable films.


Assuntos
Reagentes de Ligações Cruzadas , Embalagem de Alimentos , Álcool de Polivinil , Amido , Raios Ultravioleta , Álcool de Polivinil/química , Embalagem de Alimentos/instrumentação , Amido/química , Reagentes de Ligações Cruzadas/química , Zea mays/química , Óleos Voláteis/química , Interações Hidrofóbicas e Hidrofílicas , Cinnamomum zeylanicum/química
11.
Int J Pharm ; 658: 124208, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723731

RESUMO

Pseudomonas aeruginosa (PA), a predominant pathogen in lung infections, poses significant challenges due to its biofilm formation, which is the primary cause of chronic and recalcitrant pulmonary infections. Bacteria within these biofilms exhibit heightened resistance to antibiotics compared to their planktonic counterparts, and their secreted toxins exacerbate lung infections. Diverging from traditional antibacterial therapy for biofilm eradication, this study introduces a novel dry powder inhalation containing muco-inert ciprofloxacin and colistin co-encapsulated liposomes (Cipro-Col-Lips) prepared using ultrasonic spray freeze drying (USFD) technique. This USFD dry powder is designed to efficiently deliver muco-inert Cipro-Col-Lips to the lungs. Once deposited, the liposomes rapidly diffuse into the airway mucus, reaching the biofilm sites. The muco-inert Cipro-Col-Lips neutralize the biofilm-secreted toxins and simultaneously trigger the release of their therapeutic payload, exerting a synergistic antibiofilm effect. Our results demonstrated that the optimal USFD liposomal dry powder formulation exhibited satisfactory in vitro aerosol performance in terms of fine particle fraction (FPF) of 44.44 ± 0.78 %, mass median aerodynamic diameter (MMAD) of 4.27 ± 0.21 µm, and emitted dose (ED) of 99.31 ± 3.31 %. The muco-inert Cipro-Col-Lips effectively penetrate the airway mucus and accumulate at the biofilm site, neutralizing toxins and safeguarding lung cells. The triggered release of ciprofloxacin and colistin works synergistically to reduce the biofilm's antibiotic resistance, impede the development of antibiotic resistance, and eliminate 99.99 % of biofilm-embedded bacteria, including persister bacteria. Using a PA-beads induced biofilm-associated lung infection mouse model, the in vivo efficacy of this liposomal dry powder aerosol was tested, and the results demonstrated that this liposomal dry powder aerosol achieved a 99.7 % reduction in bacterial colonization, and significantly mitigated inflammation and pulmonary fibrosis. The USFD dry powder inhalation containing muco-inert Cipro-Col-Lips emerges as a promising therapeutic strategy for treating PA biofilm-associated lung infections.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Colistina , Inaladores de Pó Seco , Lipossomos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Colistina/administração & dosagem , Colistina/farmacologia , Administração por Inalação , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Pseudomonas/tratamento farmacológico , Camundongos , Aerossóis , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pós , Feminino , Tamanho da Partícula
12.
Biomed Mater ; 19(3)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636501

RESUMO

Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.


Assuntos
Coagulação Sanguínea , Hemostáticos , Compostos de Magnésio , Ácido Oxálico , Compostos de Silício , Compostos de Magnésio/química , Ácido Oxálico/química , Animais , Compostos de Silício/química , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Materiais Biocompatíveis/química , Hemostasia/efeitos dos fármacos , Teste de Materiais , Humanos , Propriedades de Superfície , Argila/química , Magnésio/química , Ratos
13.
Sci Rep ; 14(1): 2955, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316868

RESUMO

The association between the anatomical features of teeth and the pathogenesis of periodontitis is well-documented. This study aimed to evaluate the influence of the mesial concavity of the maxillary first premolar on periodontal clinical indices and alveolar bone resorption rates. Employing a cross-sectional design, in 226 patients with periodontitis, we used cone beam computed tomography(CBCT) to examine the mesial concavity and alveolar bone resorption of 343 maxillary first premolar. Periodontal clinical indicators recorded by periodontal probing in the mesial of the maxillary first premolar in patients with periodontitis. Our findings indicate that the presence of mesial concavity at the cemento-enamel junction of the maxillary first premolar was not significantly influenced by either tooth position or patient sex (p > 0.05). Nonetheless, the mesial concavity at the cemento-enamel junction of the maxillary first premolar was found to exacerbate alveolar bone resorption and the inflammatory condition (p < 0.05). We infer that the mesial concavity at the cemento-enamel junction of the maxillary first premolar may contribute to localized alveolar bone loss and accelerate the progression of periodontal disease.


Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Dente Pré-Molar/diagnóstico por imagem , Estudos Transversais , Maxila/diagnóstico por imagem , Perda do Osso Alveolar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico
14.
Quintessence Int ; 55(2): 130-139, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38108420

RESUMO

OBJECTIVE: The purpose of the study was to determine how the maxillary non-impacted third molars impact the distal region of alveolar bone of adjacent second molars. METHOD AND MATERIALS: The periodontal condition of maxillary second molars for which the neighboring third molars were missing (NM3- group) and those with intact non-impacted third molars (NM3+ group) was analyzed in a retrospective study. Using CBCT, the patients were categorized based on the presence or absence of periodontitis, and the alveolar bone resorption parameters in the distal area of the second molars were measured. RESULTS: A total of 135 patients with 200 maxillary second molars were enrolled in this retrospective study. Compared to the NM3- group, the second molars of the NM3+ group exhibited greater odds of increasing alveolar bone resorption in the distal region (health, OR = 3.60; periodontitis, OR = 7.68), regardless of the presence or absence of periodontitis. In healthy patients, factors such as female sex (OR = 1.48) and age above 25 years old (OR = 2.22) were linked to an elevated risk of alveolar bone resorption in the distal region of the second molars. In patients with periodontitis, male sex (OR = 3.63) and age above 45 years old (OR = 3.97) served as risk factors. CONCLUSIONS: Advanced age, sex, and the presence of non-impacted third molars are risk factors associated with alveolar bone resorption in individuals with adjacent second molars. In addition, the detrimental effects of non-impacted third molars in the population with periodontitis may be exacerbated. From a periodontal perspective, this serves as supportive evidence for the proactive removal of non-impacted third molars.


Assuntos
Perda do Osso Alveolar , Periodontite , Tomografia Computadorizada de Feixe Cônico Espiral , Dente Impactado , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Dente Serotino/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico Espiral/efeitos adversos , Dente Molar/diagnóstico por imagem , Periodontite/diagnóstico por imagem , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Dente Impactado/diagnóstico por imagem
15.
Nat Commun ; 15(1): 3525, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664445

RESUMO

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.


Assuntos
Hidrogéis , Camundongos Transgênicos , Optogenética , Polímeros , Álcool de Polivinil , Animais , Álcool de Polivinil/química , Camundongos , Hidrogéis/química , Optogenética/métodos , Polímeros/química , Nanotubos de Carbono/química , Área Tegmentar Ventral/fisiologia , Microeletrodos , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Channelrhodopsins/genética
16.
Int J Biol Macromol ; 253(Pt 6): 127306, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37813212

RESUMO

High contents of internal ß-O-4 linkages in lignin are critical for high-yield production of high-value aromatic monomers by depolymerization. However, it remains great challenge due to lack of suitable protection strategy. In this work, a very effective lignin-first strategy was developed to produce ideal lignin with a super high content of ß-O-4 linkages (up to 72 %) from poplar, in which the pretreatment was undertaken at low temperatures of 90-130 °C with the use of AlCl3-catalyzed 1, 4-butanediol solution. 2D-HSQC NMR spectra revealed that lignin ß-O-4 linkages were protected from etherification of the OH group by 1, 4-butanediol at the α position of lignin aliphatic chains. Besides, the OH groups at the γ position of lignin was also etherified, leading the formation of a structure of Ph-CH=CHCH2O(CH2)4OH. Interestingly, structure protection facilitated the formation of lignin nanoparticles via self-assembly (<100 nm). In addition, it was observed from pyrolysis results that addition of 1, 4-butanediol remarkably protected the structure of lignin by avoiding condensation, promoting the production of aromatics. The cellulose-rich fraction possessed a high cellulose digestibility of 91.64 % by enzymatic hydrolysis at a cellulase dosage of 15 FPU/g cellulose, approximately 6-fold untreated poplar (15.91 %). This low-temperature lignin-first strategy was of great importance for multi-products biorefining lignocellulose because it leads to the production of both lignin with super high content of ß-O-4 linkages for depolymerization and highly digestible cellulose for sugar production.


Assuntos
Celulose , Lignina , Lignina/química , Temperatura , Celulose/química , Butileno Glicóis , Hidrólise , Catálise
17.
Sci Rep ; 13(1): 20367, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989759

RESUMO

The emergence of antibacterial resistance (ABR) is an urgent and complex public health challenge worldwide. Antibiotic resistant genes (ARGs) are considered as a new pollutant by the WHO because of their wide distribution and emerging prevalence. The role of environmental factors in developing ARGs in bacterial populations is still poorly understood. Therefore, the relationship between environmental factors and bacteria should be explored to combat ABR and propose more tailored solutions in a specific region. Here, we collected and analyzed surface water samples from Yangtze Delta, China during 2021, and assessed the nonlinear association of environmental factors with ARGs through a sigmoid model. A high abundance of ARGs was detected. Amoxicillin, phosphorus (P), chromium (Cr), manganese (Mn), calcium (Ca), and strontium (Sr) were found to be strongly associated with ARGs and identified as potential key contributors to ARG detection. Our findings suggest that the suppression of ARGs may be achieved by decreasing the concentration of phosphorus in surface water. Additionally, Group 2A light metals (e.g., magnesium and calcium) may be candidates for the development of eco-friendly reagents for controlling antibiotic resistance in the future.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Antibacterianos/análise , Rios/microbiologia , Cálcio/farmacologia , Bactérias/genética , China , Resistência Microbiana a Medicamentos/genética , Água/farmacologia , Fósforo/farmacologia
18.
Int J Biol Macromol ; 252: 126473, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619684

RESUMO

The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 µmol/L-200.0 µmol/L), low detection limits (0.9 µmol/L) and high sensitivity (24.4 µA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.


Assuntos
Glucose Oxidase , Nanopartículas Metálicas , Humanos , Nanogéis , Ouro , Suor , Glucose , Hidrogéis/química , Condutividade Elétrica
19.
J Endod ; 49(12): 1605-1616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506763

RESUMO

INTRODUCTION: At present, the incidence of diabetes mellitus (DM) is gradually increasing globally. In clinical practice, many patients with diabetes with apical periodontitis (AP) have poor and slow healing of periapical lesions. However, the potential relationship between the 2 is still unclear and controversial. The consensus is that DM can be deemed a risk factor for AP in endodontically-treated teeth. Therefore, we pooled existing studies and carried out a meta-analysis to explore the potential association between the 2. METHODS: Studies that met the inclusion criteria were selected from the database, and relevant data were extracted. Stata SE 17.0 software was used to analyze the relevant data, and the Newcastle-Ottawa Scale was used to assess the literature's quality. The pooled odds ratio (OR) with a 95% confidence interval (CI) was used to determine the strength of the association between DM and the prevalence of AP after root canal treatment (RCT). RESULTS: After searching, 262 relevant studies were retrieved, fifteen of which met the inclusion criteria. A total of 1087 patients with 2226 teeth were included in this meta-analysis. According to the findings, diabetics showed a higher prevalence of AP after RCT than controls at the tooth level (OR = 1.51, 95% CI = 1.22-1.87, P < .01). At the patient level, DM increased the probability of developing AP in RCT teeth more than 3 times (OR = 3.38, 95% CI = 1.65-6.93, P < .01). Additionally, subgroup analysis was performed by blood glucose status, preoperative AP, and study design. Except for the status of blood glucose, the results were significant in the other 2 groups (P < .05). CONCLUSIONS: Available scientific evidence suggests that DM may increase the risk of AP in endodontically-treated teeth. In teeth with preoperative AP, DM might promote the development of AP.


Assuntos
Diabetes Mellitus , Periodontite Periapical , Dente não Vital , Humanos , Dente não Vital/complicações , Dente não Vital/epidemiologia , Glicemia , Diabetes Mellitus/epidemiologia , Tratamento do Canal Radicular/efeitos adversos , Periodontite Periapical/complicações , Periodontite Periapical/epidemiologia , Periodontite Periapical/terapia , Prevalência
20.
Int J Biol Macromol ; 225: 172-184, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36309233

RESUMO

Exploration and synthesis of degradable plastics can alleviate and avoid environmental pollution induced by petroleum-based plastics. In this study, a konjac glucomannan (KGM)/zein/PVA ternary blend plastic was successfully prepared by casting. The results showed that, despite the presence of particle aggregation from incompatible components in blend plastic, the addition of KGM and zein improved its compatibility which is consistent with the formation of continuous dark regions and the reduction of roughness average (Ra) results in the AFM characterization. Also, XRD and FT-IR results indicated that the addition of KGM and zein disrupted the molecular and crystalline structure of PVA, induced stretching vibration of alcohol and hydroxyl groups, and crystallinity reduction. In addition, KGM deacetylation (d-KGM) reduced the intramolecular hydroxyl groups, reduced the water absorption and water vapor transmission rate of the blend plastics, and increased the crystallization temperature (Tc) and melting temperature (Tm). Furthermore, the blended plastics exhibited the best tensile strength (TS), elongation at break (E), and elastic modulus (EM) when the proportion of KGM to zein was 9:1. Notably, the blended plastic with KGM and zein added displayed more pores and cracks after soil burial, implying that the lack of degradability of pure PVA plastic was improved.


Assuntos
Plásticos Biodegradáveis , Zeína , Zeína/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Químicos , Mananas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA