RESUMO
High chiral purity of lactic acid is a crucial indicator for the synthesis of chiral lactide as the primary intermediate chemical for ring-open polymerization of high molecular weight polylactic acid (PLA). Lignocellulose biomass is the most promising carbohydrate feedstock for commercial production of PLA, but the presence of trace d-lactic acid in the biorefinery chain adversely affects the synthesis and quality of chiral lactide. This study analyzed the fingerprint of trace d-lactic acid in the biorefinery chain and found that the major source of d-lactic acid comes from lignocellulose feedstock. The naturally occurring lactic acid bacteria and water-soluble carbohydrates in lignocellulose feedstock provide the necessary conditions for d-lactic acid generation. Three strategies were proposed to eliminate the generation pathway of d-lactic acid, including reduction of moisture content, conversion of water-soluble carbohydrates to furan aldehydes in pretreatment, and conversion to l-lactic acid by inoculating engineered l-lactic acid bacteria. The natural reduction of lactic acid content in lignocellulose feedstock during storage was observed due to the lactate oxidase-catalyzed oxidation of l- and d-lactic acids. This study provided an important support for the production of cellulosic l-lactic acid with high chiral purity.
Assuntos
Dioxanos , Ácido Láctico , Lactobacillales , Lignina , Ácido Láctico/metabolismo , Poliésteres/metabolismo , Fermentação , Lactobacillales/metabolismo , Carboidratos , ÁguaRESUMO
Cyclic chiral lactide is the monomer chemical for polymerization of high molecular weight polylactic acid (PLA). The synthesis of cyclic l-lactide starts from poly-condensation of l-lactic acid to a low molecular weight prepolymer and then depolymerized to cyclic l-lactide. Lignocellulose biomass is the most promising carbohydrate feedstock for lactic acid production, but the synthesis of cyclic l-lactide from l-lactic acid produced from lignocellulose has so far not been successful. The major barriers are the impurities of residual sugars and inhibitors in the crude cellulosic l-lactic acid product. Here we show a successful cyclic l-lactide synthesis from cellulosic l-lactic acid by lignocellulose biorefining with complete inhibitor removal and coordinated sugars assimilation. The removal of inhibitors from lignocellulose pretreatment was accomplished by biodetoxification using a unique fungus Amorphotheca resinae ZN1. The nonglucose sugars were completely and simultaneously assimilated at the same rate with glucose by the engineered l-lactic acid bacterium Pediococcus acidilactici. The l-lactic acid production from wheat straw was comparable to that from corn starch with high optical pure (99.6%), high l-lactic acid titer (129.4 g/L), minor residual total sugars (~2.2 g/L), and inhibitors free. The cyclic l-lactide was successfully synthesized from the regularly purified l-lactic acid and verified by detailed characterizations. This study paves the technical foundation of carbon-neutral production of biodegradable PLA from lignocellulose biomass.
Assuntos
Açúcares , Zea mays , Biomassa , Dioxanos , Fermentação , Ácido Láctico , Lignina , Poliésteres , Zea mays/químicaRESUMO
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.