Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Mater Sci Mater Med ; 29(5): 68, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748879

RESUMO

Recently, the layer-by-layer (LbL) self-assembly technology has attracted the enormous interest of researchers in synthesizing various pharmaceutical dosage forms. Herewith, we designed a biocompatible drug delivery system containing the calcium carbonate microparticles (CaCO3 MPs) that coated with the alternatively charged polyelectrolytes, i.e., poly-L-ornithine (PLO)/fucoidan by LbL self-assembly process (LbL MPs). Upon coating with the polyelectrolytes, the mean particle size of MPs obtained from SEM observations increased from 1.91 to 2.03 µm, and the surface of LbL MPs was smoothened compared to naked CaCO3 MPs. In addition, the reversible zeta potential changes have confirmed the accomplishment of layer upon a layer assembly. To evaluate the efficiency of cancer therapeutics, we loaded doxorubicin (Dox) in the LbL MPs, which resulted in high (69.7%) drug encapsulation efficiency. The controlled release of Dox resulted in the significant antiproliferative efficiency in breast cancer cell line (MCF-7 cells), demonstrating the potential of applying this innovative drug delivery system in the biomedical field.


Assuntos
Carbonato de Cálcio/química , Materiais Revestidos Biocompatíveis/síntese química , Portadores de Fármacos , Neoplasias , Peptídeos/química , Polissacarídeos/química , Nanomedicina Teranóstica/métodos , Animais , Carbonato de Cálcio/síntese química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Teste de Materiais , Camundongos , Neoplasias/diagnóstico , Neoplasias/terapia , Ornitina/química , Polimerização , Polímeros/síntese química , Polímeros/química
2.
J Mater Sci Mater Med ; 24(1): 155-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053814

RESUMO

The nanoparticles-embedded microcapsules (NEMs) with smooth surface, good sphericity, excellent dispersivity and uniform particle size distribution were prepared by emulsification combined with electrospraying to extend the sustained release performance of the embolic microcapsules loading capecitabine (CAP). The sodium alginate and chitosan with good biocompatibility were used as the materials and CAP as a small-molecule model drug. The drug loading, encapsulation efficiency and drug release of CAP in the NEMs were investigated. The results showed that the drug-loading and encapsulation efficiency both increased with the increment of chitosan and CAP concentration. The maximum values of drug loading and encapsulation efficiency were 1.97 and 18.01 % respectively when initial CAP concentration was 5.0 g/L and chitosan molecular weight 100 kDa. The cumulative release rate of CAP released from the NEMs was lower than 30 % in 0.5 h, which indicated that there was no obvious initial burst release behavior. In the subsequent 240 h, the release results confirmed that the NEMs had better sustained release properties compared to pure microcapsules, and it might be a new anticancer drug delivery system in the future studies.


Assuntos
Antineoplásicos/administração & dosagem , Cápsulas , Desoxicitidina/análogos & derivados , Fluoruracila/análogos & derivados , Materiais Biocompatíveis , Capecitabina , Desoxicitidina/administração & dosagem , Fluoruracila/administração & dosagem , Peso Molecular , Tamanho da Partícula
3.
J Mater Sci Mater Med ; 24(8): 1917-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23661255

RESUMO

A high-voltage (10 kV) electrostatic antisolvent process was used to prepare methotrexate (MTX)-loaded, large, highly-porous poly-L-lactide (PLLA) microspheres. MTX solution in dimethyl sulfoxide (DMSO) and PLLA solution in dichloromethane (DCM) were homogeneously mixed, and then ammonium bicarbonate (AB) aqueous solution was added. The mixed solution was emulsified by ultrasonication with Pluronic F127 (PF127) as an emulsion stabilizer. The emulsion was electrosprayed by the specific high-voltage apparatus and dropped into a 100 mL of ethanol, which acted as an antisolvent for the solute and extracted DMSO and DCM, causing the co-precipitation of PLLA and MTX, thus forming microspheres with AB aqueous micro-droplets uniformly inlaid. The obtained MTX-PLLA microspheres were subsequently lyophilized to obtain large, highly-porous MTX-PLLA microspheres, which exhibited an identifiable spherical shape and a rough surface furnished with open pores, with a mean particle size of 25.0 µm, mass median aerodynamic diameter of 3.1 ± 0.2 µm, fine-particle fraction of 57.1 ± 1.6 %, and porosity of 81.8 %; furthermore, they offered a sustained release of MTX. X-ray diffraction and Fourier transform-infrared spectra revealed that no crystallinity or alteration of chemical structure occurred during the high-voltage electrostatic antisolvent process, which in this study was proved to have great potential for preparing highly-porous drug-loaded polymer microspheres for use in pulmonary drug delivery.


Assuntos
Portadores de Fármacos/síntese química , Composição de Medicamentos/métodos , Metotrexato/administração & dosagem , Microesferas , Poliésteres/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Metotrexato/farmacocinética , Modelos Biológicos , Tamanho da Partícula , Poliésteres/síntese química , Porosidade , Solventes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Difração de Raios X
4.
Yao Xue Xue Bao ; 47(8): 986-92, 2012 Aug.
Artigo em Zh | MEDLINE | ID: mdl-23162893

RESUMO

Despite recent advances in conventional therapeutic approaches for cancer, the efficacy of chemotherapy for cancer is limited due to the drug resistance and toxic side effects during treatment. To overcome drug resistance, higher doses of the toxic chemotherapy drugs are frequently administered, thus leading to even severe adverse side effects, which have limited their clinical application. Cationic liposome as a novel non-viral carrier for co-delivery of gene and chemotherapy drugs in cancer gene therapy has already attracted more and more attention in recent years. Most importantly, this combined strategy can generate a significant synergistic effect, which can silence the related gene expression and increase the concentration of the intracellular chemotherapy drugs. This approach allows the use of a much lower dose of the chemotherapy drugs to achieve same therapeutic effect, which may have the potential for overcoming some major limitations of the conventional chemotherapy. In conclusion, co-delivery of gene and chemotherapy drugs with cationic liposome delivery system will play a vital role in the future and especially could be a promising clinical treatment for drug-resistant tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Terapia Genética/métodos , Lipossomos , Neoplasias/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cátions , Linhagem Celular Tumoral , DNA/administração & dosagem , DNA/genética , Técnicas de Transferência de Genes , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
5.
Carbohydr Polym ; 261: 117847, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766343

RESUMO

Surface functionalization of mesoporous silica nanoparticles (MSNs) has been proposed as an efficient strategy for enhancing the biocompatibility and efficiency of an MSN-based carrier platform. Herein, natural polyelectrolyte multilayers composed of poly-l-ornithine (PLO) and carboxymethyl lentinan (LC) were coated on the surface of MSNs through a layer-by-layer (LbL) self-assembly technique, and were characterized by ζ-potential, FTIR, 13C NMR, SEM, TEM, XRD, and TG. The prepared carrier presented alternating positive and negative potentials when coated with the polyelectrolytes, and the surface of MSN-PLO/LC was rougher compared to the naked MSNs. The biocompatibility tests, including cytocompatibility, hemocompatibility, and histocompatibility, showed that MSNs biocompatibility could be improved by modifying LC. A high loading and sustained release drug delivery system was constructed after loading doxorubicin (DOX) into the prepared MSN-PLO/LC, which exhibited significant anti-proliferative efficiency in human cervical cancer cell lines (Hela). Therefore, the PLO/LC LbL NPs (layer-by-layer self-assembled nanoparticles coated with PLO/LC layers) based on MSNs, which is easily prepared by electrostatic interactions, can be considered a promising drug chemotherapeutic platform and delivery technique for future human cervical cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Lentinano , Animais , Antineoplásicos/farmacocinética , Células Cultivadas , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Células HeLa , Humanos , Lentinano/análogos & derivados , Lentinano/síntese química , Lentinano/química , Lentinano/uso terapêutico , Masculino , Teste de Materiais , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polimerização , Polímeros/síntese química , Polímeros/química , Polímeros/uso terapêutico , Porosidade , Coelhos , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Bioeng Biotechnol ; 8: 1038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984294

RESUMO

3D printed metal crowns can be used for dental restorations. The main quality control challenge of these dental metal is the method of quality inspection. Electronic quality is a process by which the quality of the process and the parts produced can be checked online, thereby improving the process and reducing the time it takes for the entire process. Here, we propose a combination of 3D scanning and 3D measurement for 3D inspection of metal crowns. The data extracted from the 3D printed metal crowns were used as case studies to prove the proposed methodology. The obtained results confirm that the new method has very high classification accuracy compared with the traditional inspection methods, and thus yields excellent results. Moreover, the proposed approach is capable to archive 3D models of the parts and achieve rapid quality control. This paper forms the basis for solving many other similar problems that occur in 3D printing related industries.

7.
Acta Biomater ; 113: 305-316, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663663

RESUMO

Considering the complicated and irregular anatomical structure of root canal systems, injectable microspheres have received considerable attention as cell carriers in endodontic regeneration. Herein, we developed injectable hybrid RGD-alginate/laponite (RGD-Alg/Lap) hydrogel microspheres, co-encapsulating human dental pulp stem cells (hDPSCs) and vascular endothelial growth factor (VEGF). These microspheres were prepared by the electrostatic microdroplet method with an average size of 350~450 µm. By adjusting the content of laponite, the rheological properties and the degradation rate of the microspheres in vitro could be conditioned. The release of VEGF from the RGD-Alg/0.5%Lap microspheres was in a sustained manner for 28 days while the bioactivity of VEGF was preserved. In addition, the encapsulated hDPSCs were evenly distributed in microspheres with a cell viability exceeding 85%. The deposition of abundant extracellular matrix such as fibronectin (FN) and collagen type I (Col-I) was shown in microspheres after 7 days. The laponite in the system significantly up-regulated the expression of odontogenic-related genes of hDPSCs at day 7. Furthermore, after subcutaneous implantation with tooth slices in a nude mouse model for 1 month, the hDPSCs-laden RGD-Alg/0.5%Lap+VEGF microspheres significantly promoted the regeneration of pulp-like tissues as well as the formation of new micro-vessels. These results demonstrated the great potential of laponite-enhanced hydrogel microspheres in vascularized dental pulp regeneration. STATEMENT OF SIGNIFICANCE: Injectable cell-laden microspheres have recently gained great attention in endodontic regeneration. Here we first developed hybrid alginate/laponite hydrogel microspheres (size about 350~450 µm) by electrostatic microdroplet method, which exhibited tunability in mechanical property and sustained release ability. The incorporation of laponite and the sustained release of VEGF supported not only dental pulp stem cells differentiation in vitro but neotissue regeneration in vivo. These features combined with the simplicity in preparation, made the microspheres ideally suited to simultaneous cells and growth factors delivery in dental pulp regeneration and even other tissue regeneration application.


Assuntos
Alginatos , Hidrogéis , Diferenciação Celular , Polpa Dentária , Hidrogéis/farmacologia , Microesferas , Regeneração , Silicatos , Células-Tronco , Fator A de Crescimento do Endotélio Vascular
8.
J Biomed Mater Res A ; 107(2): 339-347, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548527

RESUMO

Herein, we fabricated the novel drug delivery system based on the self-assembly of two polyelectrolytes, poly-allylamine hydrochloride (PAH) and fucoidan, as the polycation and polyanion, respectively, under mild conditions for cancer therapeutics. Furthermore, the designed polyelectrolyte complex nanoparticles as well as the methotrexate (MTX) disodium salt-loaded composites were systematically characterized using various techniques. The MTX loading in the nanoparticles was confirmed by zeta potential values that changed from -36.2 ± 2.2 to -28.3 ± 3.1 mV at a loading amount of 13.3 ± 1.2%. Furthermore, the obtained eventual particle sizes of nanoparticles were various with different concentrations and ratios of polyelectrolytes. The particle size also has increased from 130 ± 2.6 to 162.9 ± 2.3 nm after loading MTX. The drug release investigations in vitro at a pH value of 6.0 (acid environment) showed that the release of MTX was sustained in the conditions provided. Finally, we investigated the anticancer efficacy of MTX-loaded nanoparticles on MCF-7 cells and HeLa cells and the satisfactory results were obtained. Together, these self-assembled PAH/fucoidan nanoparticles with sustained drug release property will become the promising delivery system for cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 339-347, 2019.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Metotrexato/administração & dosagem , Poliaminas/química , Polissacarídeos/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polieletrólitos/química
9.
J Biomater Sci Polym Ed ; 29(11): 1319-1330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29578386

RESUMO

To improve the efficacy and reduce the systemic toxicity of the diabetes mellitus, herewith, we developed a novel microparticles-embedded microcapsules (MEMs) system, synthesized from calcium alginate/chitosan (Ca-Alg/CS), by emulsion gelation using a high voltage electrostatic droplet generator. In our study, we selected two antidiabetic drugs insulin (INS) and metformin (MET) as model drugs to investigate different spatial distribution appropriate of MEMs system. Characterization based on particle size and morphology, encapsulation efficiency and drug loading, as well as drug delivery properties were carried out on the MEMs system. Typical multi-chamber structure was shown by SEM and the optical spectra. The average diameters of microparticles and Ca-Alg/CS MEMs were 2100 nm and 410 µm, respectively. Insulin and MET were embedded into MEMs via electrostatic reaction according to FT-IR spectra. Moreover, drug loading and encapsulation efficiency of INS were higher than that of MET in this system when drugs were loaded alone or together. More importantly, this system has potential for orderly drug release and well sustained release when MET in the inner and INS in the outer space could be applied as a combination therapy for diabetes. The obtained in vivo experimental data on diabetes rats has shown that the designed MEMs system resulted in a higher hypoglycemic effect within add-on therapy.


Assuntos
Alginatos/química , Cápsulas/química , Quitosana/química , Insulina/administração & dosagem , Metformina/administração & dosagem , Microesferas , Materiais Biocompatíveis/química , Diabetes Mellitus/tratamento farmacológico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Quimioterapia Combinada/métodos , Géis/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Metformina/efeitos adversos , Tamanho da Partícula , Propriedades de Superfície
10.
Int J Nanomedicine ; 13: 8269-8279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584299

RESUMO

In recent times, co-delivery of therapeutics has emerged as a promising strategy for treating dreadful diseases such as cancer. MATERIALS AND METHODS: In this study, we developed a novel nanocarrier based on bacterial magnetosomes (BMs) that co-loaded with siRNA and doxorubicin (DOX) using polyethyleneimine (PEI) as a cross-linker (BMs/DP/siRNA). The delivery efficiency of siRNA as well as the pH-responsive release of DOX, and synergistic efficacy of these therapeutics in vitro were systematically investigated. RESULTS: The structure of DOX-PEI (DP) conjugates that synthesized via hydrazone bond formation was confirmed by 1H nuclear magnetic resonance (NMR). The in vitro release experiments showed that the DP conjugate (DOX-loading efficiency - 5.77%±0.08%) exhibited the long-term release behavior. Furthermore, the optimal BMs/DP/siRNA particle size of 107.2 nm and the zeta potential value of 31.1±1.0 mV facilitated enhanced cellular internalization efficiency. Moreover, the agarose gel electrophoresis showed that the co-delivery system could protect siRNA from degradation in serum and RNase A. In addition, the cytotoxicity assay showed that BMs/DP/siRNA could achieve an excellent synergistic effect compared to that of siRNA delivery alone. The acridine orange (AO)/ethidium bromide (EB) double staining assay also showed that BMs/DP/siRNA complex could induce cells in a stage of late apoptosis and nanocomplex located in the proximity of the nucleus. CONCLUSION: The combination of gene and chemotherapeutic drug using BMs is highly efficient, and the BMs/DP/siRNA would be a promising therapeutic strategy for the future therapeutics.


Assuntos
Portadores de Fármacos/química , Magnetossomos/química , Magnetospirillum/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Polietilenoimina/síntese química , Polietilenoimina/química , Espectroscopia de Prótons por Ressonância Magnética , RNA Interferente Pequeno/genética
11.
J Biomater Appl ; 30(3): 351-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25838353

RESUMO

Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3ß-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Quitosana/análogos & derivados , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Apoptose , Cátions , Quitosana/administração & dosagem , Portadores de Fármacos , Lipossomos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Neoplasias/patologia , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Sci China Life Sci ; 57(7): 698-709, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935781

RESUMO

The in vitro and in vivo anti-tumor efficacy of methotrexate-loaded Fe3O4-poly-L-lactide-poly(ethylene glycol)-poly-L-lactide magnetic composite microspheres (MTX-Fe3O4-PLLA-PEG-PLLA MCMs, MMCMs), which were produced by co-precipitation (C) and microencapsulation (M) in a supercritical process, was evaluated at various levels: cellular, molecular, and integrated. The results at the cellular level indicate that MMCMs (M) show a better anti-proliferation activity than raw MTX and could induce morphological changes of cells undergoing apoptosis. At the molecular level, MMCMs (M) lead to a significantly higher relative mRNA expression of bax/bcl-2 and caspase-3 than MMCMs (C) at 10 µg mL(-1) (P<0.01); and the pro-caspase-3 protein expression measured by Western blot analysis also demonstrates that MMCMs (M) can effectively activate pro-caspase-3. At the integrated level, mice bearing a sarcoma-180 tumor are used; in vivo anti-tumor activity tests reveal that MMCMs (M) with magnetic induction display a much higher tumor suppression rate and lower toxicity than raw MTX. Pharmacokinetic studies show that MMCMs (M) with magnetic induction significantly increase the accumulation of MTX in the tumor tissue compared with the other treatments. These results suggest that the MMCMs (M) prepared by the SpEDS process have great potential to play a positive role in the magnetic targeted therapy field.


Assuntos
Antineoplásicos/farmacologia , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Microesferas , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Área Sob a Curva , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Compostos Férricos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metotrexato/química , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Poliésteres/química , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
13.
Int J Nanomedicine ; 7: 3013-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22787397

RESUMO

BACKGROUND: The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO(2)-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO(2) (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO(2) (SEDS). METHODS: Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an "injector" was utilized in the suspension delivery system. RESULTS: After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. CONCLUSION: Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system.


Assuntos
Dióxido de Carbono/química , Lactatos/química , Metotrexato/química , Nanocápsulas/química , Polietilenoglicóis/química , Precipitação Química , Metotrexato/farmacocinética , Tamanho da Partícula , Propriedades de Superfície , Suspensões/química
14.
Toxicol Lett ; 212(1): 75-82, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22609093

RESUMO

The biocompatibility of Fe3O4-poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) magnetic microspheres (Fe3O4-PLLA-PEG-PLLA MMPs) prepared in a process of suspension-enhanced dispersion by supercritical CO2 (SpEDS) was evaluated at various levels: cellular, molecular, and integrated. At the cellular level, the investigations of cytotoxicity and intracellular reactive oxygen species (ROS) generation indicate that the polymer-coated MMPs (2.0 mg/mL) had a higher toxicity than uncoated Fe3O4 nanoparticles, which led to about 20% loss of cell viability and an increase (0.2 fold) in ROS generation; the differences were not statistically significant (p > 0.05). However, an opposite phenomenon was observed in tests of hemolysis, which showed that the MMPs displayed the weakest hemolytic activity, namely only about 6% at the highest concentration (20 mg/mL). This phenomenon reveals that polymer-coated MMPs created less toxicity in red blood cells than uncoated Fe3O4 nanoparticles. At the molecular level, the MMPs were shown to be less genotoxic than Fe3O4 nanoparticles by measuring the micronucleus (MN) frequency in CHO-K1 cells. Furthermore, the mRNA expression of pro-inflammatory cytokines demonstrates that polymer-coated MMPs elicited a less intense secretion of pro-inflammatory cytokines than uncoated Fe3O4 nanoparticles. Acute toxicity tests of MMPs show quite a low toxicity, with an LD50 > 1575.00 mg/kg. The evidence of low toxicity presented in the results indicates that the Fe3O4-PLLA-PEG-PLLA MMPs from the SpEDS process have great potential for use in biomedical applications.


Assuntos
Materiais Biocompatíveis/toxicidade , Compostos Férricos/toxicidade , Lactatos/toxicidade , Microesferas , Polietilenoglicóis/toxicidade , Animais , Materiais Biocompatíveis/química , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Citocinas/biossíntese , Citocinas/genética , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Feminino , Compostos Férricos/química , Humanos , Lactatos/química , Masculino , Camundongos , Testes para Micronúcleos , Polietilenoglicóis/química , RNA/química , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA