RESUMO
Improving the nitrogen and phosphorus removal rates and efficiently controlling membrane fouling are the keys to fully exploiting the applicability of anaerobic membrane bioreactor (AnMBR) process in high-concentration wastewater treatment. To that purpose, an integrated reactor composed of an anaerobic ceramic membrane bioreactor and N anaerobic fluidized bed (AnCMBR-AFB) was built and pollutant removal efficiency, nitrogen and phosphorus recovery characteristics, and membrane pollution features of this integrated reactor were investigated. The results revealed that the integrated reactor had good pollutant removal efficiency, with turbidity, chromaticity, and UV254 average values of the effluent being 0.470 NTU, 0.011 A, and 0.057 cm-1, respectively, and the average CODCr removal rate was 80%. The nitrogen and phosphorus recoveries were significantly higher than the nitrogen and phosphorus removal rates of conventional AnMBR at 23.20 ± 1.17% and 43.34 ± 1.54%, respectively. Microscopic analysis revealed the formation of magnesium ammonium phosphate (MAP) crystals on the carrier's surface, and friction between the carrier and the membrane surface could delay membrane fouling while allowing the contaminated membrane surface to retain significant roughness. Membrane fouling was mostly brought on by amides and saturated hydrocarbons, and inorganic metal ions also played a role to some extent.
Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , Fósforo , Anaerobiose , Reatores Biológicos , Membranas Artificiais , EsgotosRESUMO
Chemical cleaning is one of the key technical means to control membrane fouling, restore membrane flux and ensure the stable operation of membrane systems. In the experiment, the six most representative chemical cleaning agents for ceramic membranes, such as sulfuric acid (H2SO4), sodium hydroxide (NaOH), sodium hypochlorite (NaClO), ethylenediaminetetraacetic acid disodium salt (EDTA-Na2), sodium dodecyl sulfate (SDS) and nonylphenol polyoxyethylene ether (OP-10), were used as research objects. The cleaning effect of the two-step combined cleaning of chemical cleaning agents on the fouled membrane was systematically investigated. Results showed that the order of the chemical cleaning agent had a significant effect on the cleaning effect. The best chemical cleaning program was determined to be NaClO first and then SDS: the fouled ceramic membrane was soaked in NaClO solution at 0.15% for 2.5 h and further soaked in SDS solution at five times its own critical micelle concentration for 2.5 h. The predicted long-term lifespan of the ceramic membranes was 4.91 years. Scanning electron microscopy-energy spectrum analysis showed that the surface roughness of the cleaned ceramic membrane was slightly higher than that of the new membrane. The contact angle was slightly lower than that of the new membrane.
Assuntos
Longevidade , Purificação da Água , Membranas Artificiais , Purificação da Água/métodos , Dodecilsulfato de Sódio , CerâmicaRESUMO
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.
Assuntos
Reatores Biológicos , Cerâmica , Membranas Artificiais , Cerâmica/química , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Incrustação Biológica/prevenção & controleRESUMO
African swine fever (ASF), caused by African swine fever virus (ASFV), is a devastating infectious disease of domestic pigs and wild boars, and has tremendous negative socioeconomic impact on the swine industry and food security worldwide. It is characterized as a notifiable disease by World Organisation for Animal Health (OIE). No effective vaccine or treatment against ASF has so far been available. Early detection and rapid diagnosis are of potential significance to control the spread of ASF. Recombinase-based isothermal amplification assay, recombinase polymerase amplification (RPA) developed by TwistDx (Cambridge, United Kingdom) or recombinase-aided amplification (RAA) by Qitian (Wuxi, China), is becoming a molecular tool for the rapid, specific, and cost-effective identification of multiple pathogens. In this study, we aim to investigate if RPA/RAA can be a potential candidate for on-site, rapid and primary detection of ASFV. A panel of 152 clinical samples previously well-characterized by OIE-recommended qPCR was enrolled in this study, including 20 weak positive (Ct value ≥ 30) samples. This panel was consisted of different types, such as EDTA-blood, spleen, lung, lymph node, kidney, tonsil, liver, brain. We evaluated two recombinase-based isothermal amplification assays, RPA or RAA, by targeting the ASFV B646L gene (p72), and validated the clinical performance in comparison with OIE real-time PCR. Our result showed that the analytical sensitivity of RPA and RAA was as 93.4 and 53.6 copies per reaction, respectively at 95% probability in 16 min, at 39°C. They were universally specific for all 24 genotypes of ASFV and no cross reaction to other pathogens including Classical swine fever virus (CSV), Foot-and-mouth disease virus (FMDV), Pseudorabies virus, Porcine circovirus 2 (PCV2), Porcine Reproductive and respiratory syndrome virus (PPRSV). The results on detection of various kinds of clinical samples indicated an excellent diagnostic agreement between RPA, RAA and OIE real-time PCR method, with the kappa value of 0.960 and 0.973, respectively. Compared to real-time PCR, the specificity of both RPA and RAA was 100% (94.40% â¼ 100%, 95% CI), while the sensitivity was 96.59% (90.36% â¼ 99.29%, 95% CI) and 97.73% (92.03% â¼ 99.72%, 95% CI), respectively. Our data demonstrate that the developed recombinase-based amplification assay (RPA/RAA), promisingly equipped with field-deployable instruments, offers a sensitive and specific platform for the rapid and reliable detection of ASFV, especially in the resource-limited settings for the purpose of screening and surveillance of ASF.