Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083103

RESUMO

This article provides a novel and efficient method of "self-assembly/modification/dispersion" for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self-assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self-assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery.


Assuntos
Celulose/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Nano ; 16(10): 16806-16815, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36194701

RESUMO

Wearable strain sensors have huge potential for applications in healthcare, human-machine interfacing, and augmented reality systems. However, the nonlinear response of the resistance signal to strain has caused considerable difficulty and complexity in data processing and signal transformation, thus impeding their practical applications severely. Herein, we propose a simple way to achieve linear and reproducible resistive signals responding to strain in a relatively wide strain range for flexible strain sensors, which is achieved via the fabrication of Janus and heteromodulus elastomeric fiber mats with micropatterns using microimprinting second processing technology. In detail, both isotropic and anisotropic fiber mats can turn into Janus fiber mats with periodical and heteromodulus micropatterns via controlling the fiber fusion and the diffusion of local macromolecular chains of thermoplastic elastomers. The Janus heterogeneous microstructure allows for stress redistribution upon stretching, thus leading to lower strain hysteresis and improved linearity of resistive signal. Moreover, tunable sensing performance can be achieved by tailoring the size of the micropatterns on the fiber mat surface and the fiber anisotropy. The Janus mat strain sensors with high signal linearity and good reproducibility have a very low strain detection limit, enabling potential applications in human-machine interfacing and intelligent control fields if combined with a wireless communication module.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Elastômeros , Elasticidade
3.
Int J Biol Macromol ; 161: 177-186, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470582

RESUMO

Cellulose is an abundant feedstock with renewability and biodegradability. However, it is still challenging to manufacture natural cellulose products by environmentally friendly thermoplastic processing methods. Herein, we proposed a green approach for the heterogeneous preparation of thermoplastic cellulose grafted polyurethane (RCP-g-PU) from amorphous regenerated cellulose paste (RCP) via hydroxyl/isocyanate chemistry. First, amorphous RCP was fabricated through dissolving cellulose in sodium hydroxide aqueous solution and regenerating in polyethylene glycol, resulting in the enhancement of the accessibility of hydroxy groups in cellulose chains. Subsequently, a series of thermoplastic RCP-g-PU with the melt flow temperatures ranging from 160 °C to 226 °C were feasibly synthesized by adding hexamethylene diisocyanate into RCP without using other organic solvents. Eventually, the resultant RCP-g-PU can be directly hot-pressed into transparent films with flexibility and foldability. The reported methodology represents a sustainable route to achieve thermoplastic cellulose derivatives.


Assuntos
Celulose/química , Poliuretanos/química , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
4.
ACS Appl Mater Interfaces ; 12(20): 23514-23522, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329606

RESUMO

Hydrogel bioelectronics as one of the next-generation wearable and implantable electronics ensures excellent biocompatibility and softness to link the human body and electronics. However, volatile, opaque, and fragile features of hydrogels due to the sparse and microscale three-dimensional network seriously limit their practical applications. Here, we report a type of smart and robust nanofibrillar poly(vinyl alcohol) (PVA) organohydrogels fabricated via one-step physical cross-linking. The nanofibrillar network cross-linked by numerous PVA nanocrystallites enables the formation of organohydrogels with high transparency (90%), drying resistance, high toughness (3.2 MJ/m3), and tensile strength (1.4 MPa). For strain sensor application, the PVA ionic organohydrogel after soaking in NaCl solution shows excellent linear sensitivity (GF = 1.56, R2 > 0.998) owing to the homogeneous nanofibrillar PVA network. We demonstrate the potential applications of the nanofibrillar PVA-based organohydrogel in smart contact lens and emotion recognition. Such a strategy paves an effective way to fabricate strong, tough, biocompatible, and ionically conductive organohydrogels, shedding light on multifunctional sensing applications in next-generation flexible bioelectronics.


Assuntos
Lentes de Contato , Hidrogéis/química , Monitorização Fisiológica/instrumentação , Nanofibras/química , Álcool de Polivinil/química , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Reconhecimento Facial , Humanos , Movimento , Nanopartículas/química , Resistência à Tração
5.
ACS Appl Mater Interfaces ; 11(40): 36589-36597, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513743

RESUMO

Solar-driven interfacial water evaporation is regarded as an effective, renewable, and environment-friendly technology for clean water production. However, biofouling caused by the nonspecific interaction between the steam generator and biofoulants generally hinders the efficient application of wastewater treatment. Herein, this work reports a facile strategy to fabricate flexible anti-biofouling fibrous photothermal membrane consisting of a MXene-coated cellulose membrane for highly efficient solar-driven water steam evaporation toward water purification applications. The as-prepared MXene/cellulose photothermal membrane exhibits light absorption efficiency as high as ∼94% in a wide solar spectrum range and a water evaporation rate up to 1.44 kg m-2 h-1 under one solar illumination. Also, the MXene/cellulose membrane shows very high antibacterial efficiency (above 99.9%) owing to the MXene coating as a highly effective bacteriostatic agent. Such a flexible, anti-biofouling, and high-efficiency photothermal membrane sheds light on practical applications in long-term wastewater treatments.


Assuntos
Incrustação Biológica , Celulose/química , Membranas Artificiais , Luz Solar , Titânio/química , Purificação da Água , Celulose/ultraestrutura , Escherichia coli/ultraestrutura , Grafite/química , Viabilidade Microbiana , Maleabilidade , Staphylococcus aureus/ultraestrutura , Vapor , Abastecimento de Água
6.
J Phys Chem B ; 117(13): 3667-74, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23477609

RESUMO

The crystallization and melting behaviors and crystalline structure of melt and cold crystallized poly(L-lactide)/poly(D-lactide) (PLLA/PDLA) blend were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), respectively. The isothermal crystallization kinetics during the melt and cold crystallization process were analyzed using the Avrami equation. The overall crystallization rate constant (k) of cold crystallization is much higher than that of melt crystallization. Moreover, k as a function of crystallization temperature shows different trends in melt and cold crystallization, indicating different crystallization mechanisms in the melt and cold crystallization. The polymorphic crystallization of homocrystallites (the transition crystallization temperature from δ to α form) is not altered by either the equimolar blending of PLLA and PDLA or the type of crystallization procedures, while the crystallization window for exclusive stereocomplex crystallites is widened from 170 °C for melt crystallization to 170-200 °C for cold crystallization. The stereocomplex crystallites are hard to form in both melt and cold crystallization at crystallization temperatures of 90 and 100 °C, and the crystallinity of stereocomplex crystallites for cold crystallization is higher than that of melt crystallization at temperatures above 110 °C. Especially, a pure and significantly higher crystallinity of stereocomplex crystallites can be achieved at 170-200 °C by cold crystallization. The results provide a huge possibility to control stereocomplex crystallization to enlarge its applications.


Assuntos
Poliésteres/química , Temperatura , Varredura Diferencial de Calorimetria , Cristalização , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA