Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nanomedicine ; 32: 102332, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181273

RESUMO

Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.


Assuntos
Córnea/patologia , Diabetes Mellitus/patologia , Células Epiteliais/patologia , Nanopartículas/química , Polímeros/química , RNA/uso terapêutico , Células-Tronco/patologia , Cicatrização , Adenoviridae/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Cultivadas , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Oligonucleotídeos Antissenso/farmacologia , RNA/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
2.
Int J Mol Sci ; 16(4): 8607-20, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25894227

RESUMO

Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles.


Assuntos
Malatos/química , Nanoconjugados/química , Polímeros/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Cinética , Trastuzumab/química
3.
Biomacromolecules ; 15(6): 2049-57, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24825478

RESUMO

Herein we designed and characterized films composed of naturally derived materials for controlled release of proteins. Traditional drug delivery strategies rely on synthetic or semisynthetic materials or utilize potentially denaturing assembly conditions that are not optimal for sensitive biologics. Layer-by-layer (LbL) assembly of films uses benign conditions and can generate films with various release mechanisms including hydrolysis-facilitated degradation. These use components such as synthetic polycations that degrade into non-natural products. Herein we report the use of a naturally derived, biocompatible and degradable polyanion, poly(ß-l-malic acid), alone and in combination with chitosan in an LbL film, whose degradation products of malic acid and chitosan are both generally recognized as safe (GRAS) by the FDA. We have found that films based on this polyanion have shown sustained release of a model protein, lysozyme that can be timed from tens of minutes to multiple days through different film architectures. We also report the incorporation and release of a clinically used biologic, basic fibroblast growth factor (bFGF), which demonstrates the use of this strategy as a platform for controlled release of various biologics.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Malatos/química , Muramidase/química , Polímeros/química , Animais , Quitosana/metabolismo , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Malatos/metabolismo , Camundongos , Muramidase/metabolismo , Células NIH 3T3 , Polímeros/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(42): 18143-8, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921419

RESUMO

Effective treatment of brain neurological disorders such as Alzheimer's disease, multiple sclerosis, or tumors should be possible with drug delivery through blood-brain barrier (BBB) or blood-brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Malatos/uso terapêutico , Nanopartículas , Polímeros/uso terapêutico , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/patologia , Endossomos/metabolismo , Infusões Intravenosas , Malatos/administração & dosagem , Malatos/farmacocinética , Camundongos , Camundongos Nus , Polímeros/administração & dosagem , Polímeros/farmacocinética
5.
Int J Mol Sci ; 13(9): 11681-11693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109877

RESUMO

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(ß-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.


Assuntos
Antibióticos Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Malatos , Nanoconjugados/química , Polímeros , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Hidrazonas/química , Concentração de Íons de Hidrogênio , Malatos/química , Malatos/farmacocinética , Malatos/farmacologia , Masculino , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia
6.
Nat Nanotechnol ; 17(4): 337-346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393599

RESUMO

After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.


Assuntos
Anafilaxia , COVID-19 , Anafilaxia/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Lipossomos , Nanomedicina , Nanopartículas , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
7.
Adv Drug Deliv Rev ; 180: 114079, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902516

RESUMO

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.


Assuntos
Portadores de Fármacos , Nanomedicina , Polietilenoglicóis/química , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Humanos
8.
ACS Nano ; 16(8): 11815-11832, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961653

RESUMO

The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(ß-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aß/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/patologia , Nanoconjugados , Transcitose , Peptídeos/química , Polímeros/farmacologia , Peptídeos beta-Amiloides/metabolismo
9.
Pharm Res ; 27(11): 2317-29, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20387095

RESUMO

PURPOSE: Temozolomide (TMZ) is a pro-drug releasing a DNA alkylating agent that is the most effective drug to treat glial tumors when combined with radiation. TMZ is toxic, and therapeutic dosages are limited by severe side effects. Targeted delivery is thus needed to improve efficiency and reduce non-tumor tissue toxicity. METHODS: Multifunctional targetable nanoconjugates of TMZ hydrazide were synthesized using poly(ß-L-malic acid) platform, which contained a targeting monoclonal antibody to transferrin receptor (TfR), trileucine (LLL), for pH-dependent endosomal membrane disruption, and PEG for protection. RESULTS: The water-soluble TMZ nanoconjugates had hydrodynamic diameters in the range of 6.5 to 14.8 nm and ζ potentials in the range of -6.3 to -17.7 mV. Fifty percent degradation in human plasma was observed in 40 h at 37°C. TMZ conjugated with polymer had a half-life of 5-7 h, compared with 1.8 h for free TMZ. The strongest reduction of human brain and breast cancer cell viability was obtained by versions of TMZ nanoconjugates containing LLL and anti-TfR antibody. TMZ-resistant cancer cell lines were sensitive to TMZ nanoconjugate treatment. CONCLUSIONS: TMZ-polymer nanoconjugates entered the tumor cells by receptor-mediated endocytosis, effectively reduced cancer cell viability, and can potentially be used for targeted tumor treatment.


Assuntos
Antineoplásicos/administração & dosagem , Dacarbazina/análogos & derivados , Malatos/química , Nanopartículas , Polímeros/química , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Humanos , Lipossomos , Peso Molecular , Temozolomida
10.
ACS Nano ; 13(2): 1253-1271, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633492

RESUMO

One of the major problems facing the treatment of neurological disorders is the poor delivery of therapeutic agents into the brain. Our goal is to develop a multifunctional and biodegradable nanodrug delivery system that crosses the blood-brain barrier (BBB) to access brain tissues affected by neurological disease. In this study, we synthesized a biodegradable nontoxic ß-poly(l-malic acid) (PMLA or P) as a scaffold to chemically bind the BBB crossing peptides Angiopep-2 (AP2), MiniAp-4 (M4), and the transferrin receptor ligands cTfRL and B6. In addition, a trileucine endosome escape unit (LLL) and a fluorescent marker (rhodamine or rh) were attached to the PMLA backbone. The pharmacokinetics, BBB penetration, and biodistribution of nanoconjugates were studied in different brain regions and at multiple time points via optical imaging. The optimal nanoconjugate, P/LLL/AP2/rh, produced significant fluorescence in the parenchyma of cortical layers II/III, the midbrain colliculi, and the hippocampal CA1-3 cellular layers 30 min after a single intravenous injection; clearance was observed after 4 h. The nanoconjugate variant P/LLL/rh lacking AP2, or the variant P/AP2/rh lacking LLL, showed significantly less BBB penetration. The LLL moiety appeared to stabilize the nanoconjugate, while AP2 enhanced BBB penetration. Finally, nanoconjugates containing the peptides M4, cTfRL, and B6 displayed comparably little and/or inconsistent infiltration of brain parenchyma, likely due to reduced trans-BBB movement. P/LLL/AP2/rh can now be functionalized with intra-brain targeting and drug treatment moieties that are aimed at molecular pathways implicated in neurological disorders.


Assuntos
Barreira Hematoencefálica/química , Leucina/farmacocinética , Malatos/farmacocinética , Nanoconjugados/química , Peptídeos/farmacocinética , Polímeros/farmacocinética , Rodaminas/farmacocinética , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Injeções Intravenosas , Leucina/administração & dosagem , Leucina/química , Malatos/administração & dosagem , Malatos/química , Camundongos , Nanoconjugados/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/química , Polieletrólitos , Polímeros/administração & dosagem , Polímeros/química , Rodaminas/administração & dosagem , Rodaminas/química , Distribuição Tecidual
11.
Biomaterials ; 206: 146-159, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933776

RESUMO

Maximal surgical resection of glioma remains the single most effective treatment. Tools to guide the resection while avoiding removal of normal brain tissues can aid surgeons in achieving optimal results. One strategy to achieve this goal is to rely upon interoperative fluorescence staining of tumor cells in vivo, that can be visualized by the surgeon during resection. Towards this goal we have designed a biodegradable fluorescent mini nano imaging agent (NIA) with high specificity for U87MG glioma cells and previously unmet high light emission. The NIA is the conjugate of polymalic acid (PMLA) with chlorotoxin for tumor targeting, indocyanine green (ICG) for NIR fluorescence and the tri-leucin peptide as fluorescence enhancer. PMLA as a multivalent platform carries several molecules of ICG and the other ligands. The NIA recognizes multiple sites on glioma cell surface, demonstrated by the effects of single and combined competitors. Systemic IV injection into xenogeneic mouse model carrying human U87MG glioblastoma indicated vivid tumor cell binding and internalization of NIA resulting in intensive and long-lasting tumor fluorescence. The NIA is shown to greatly improve tumor removal supporting its utility in clinical applications.


Assuntos
Glioblastoma/cirurgia , Malatos/química , Nanoconjugados/química , Polímeros/química , Venenos de Escorpião/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Verde de Indocianina/química , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Commun ; 10(1): 3850, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462642

RESUMO

Brain glioma treatment with checkpoint inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4 (a-CTLA-4) and programmed cell death-1 (a-PD-1) was largely unsuccessful due to their inability to cross blood-brain barrier (BBB). Here we describe targeted nanoscale immunoconjugates (NICs) on natural biopolymer scaffold, poly(ß-L-malic acid), with covalently attached a-CTLA-4 or a-PD-1 for systemic delivery across the BBB and activation of local brain anti-tumor immune response. NIC treatment of mice bearing intracranial GL261 glioblastoma (GBM) results in an increase of CD8+ T cells, NK cells and macrophages with a decrease of regulatory T cells (Tregs) in the brain tumor area. Survival of GBM-bearing mice treated with NIC combination is significantly longer compared to animals treated with single checkpoint inhibitor-bearing NICs or free a-CTLA-4 and a-PD-1. Our study demonstrates trans-BBB delivery of tumor-targeted polymer-conjugated checkpoint inhibitors as an effective GBM treatment via activation of both systemic and local privileged brain tumor immune response.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Imunoconjugados/administração & dosagem , Nanoconjugados/química , Animais , Antineoplásicos Imunológicos/farmacocinética , Biopolímeros/química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Glioma/imunologia , Glioma/patologia , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Malatos/química , Camundongos , Permeabilidade , Physarum polycephalum/química , Polímeros/química , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Resultado do Tratamento
13.
Chem Biol Interact ; 171(2): 195-203, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17376417

RESUMO

A new prototype of polymer-derived drug delivery system, the nanoconjugate Polycefin, was tested for its ability to accumulate in tumors based on enhanced permeability and retention (EPR) effect and receptor mediated endocytosis. Polycefin was synthesized for targeted delivery of Morpholino antisense oligonucleotides into certain tumors. It consists of units that are covalently conjugated with poly(beta-l-malic acid) (M(w) 50,000, M(w)/M(n) 1.3) highly purified from cultures of myxomycete Physarum polycephalum. The units are active in endosomal uptake, disruption of endosomal membranes, oligonucleotide release in the cytoplasm, and protection against enzymatic degradation in the vascular system. The polymer is biodegradable, non-immunogenic and non-toxic. Polycefin was also coupled with AlexaFluor 680 C2-maleimide dye for in vivo detection. Nude mice received subcutaneous injections of MDA-MB 468 human breast cancer cells into the left posterior mid-dorsum or intracranial injections of human glioma cell line U87MG. Polycefin at concentration of 2.5mg/kg was injected via the tail vein. In vivo fluorescence tumor imaging was performed at different time points, 0-180 min up to 24h after the drug injection. The custom-made macro-illumination imaging MISTI system was used to examine the in vivo drug accumulation in animals bearing human breast and brain tumors. In breast tumors the fluorescence signal in large blood vessels and in the tumor increased rapidly until 60 min and remained in the tumor at a level 6 times higher than in non-tumor tissue (180 min) (p<0.003). In brain tumors drug accumulated selectively in 24h without any detectable signal in non-tumor areas. The results of live imaging were corroborated histologically by fluorescence microscopic examination of various organs. In addition to tumors, only kidney and liver showed some fluorescent signal.


Assuntos
Neoplasias da Mama/patologia , Malatos/administração & dosagem , Nanopartículas , Polímeros/administração & dosagem , Animais , Linhagem Celular Tumoral , Fluorescência , Humanos , Malatos/química , Camundongos , Camundongos Nus , Polímeros/química
14.
J Control Release ; 244(Pt A): 14-23, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27825958

RESUMO

Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database. Two xenogeneic mouse models bearing intracranial human GBMs from cell lines LN229 and U87MG that expressed both CK2 and EGFR at different levels were used. Simultaneous knockdown of CK2α and EGFR/EGFRvIII suppressed their downstream prosurvival signaling. Treatment also markedly reduced the expression of programmed death-ligand 1 (PD-L1), a negative regulator of cytotoxic lymphocytes. Downregulation of CK2 and EGFR also caused deactivation of heat shock protein 90 (Hsp90) co-chaperone Cdc37, which may suppress the activity of key cellular kinases. Inhibition of either target was associated with downregulation of the other target as well, which may underlie the increased efficacy of the dual nanobioconjugate that is directed against both CK2 and EGFR. Importantly, the single nanodrugs, and especially the dual nanodrug, markedly suppressed the expression of the cancer stem cell markers c-Myc, CD133, and nestin, which could contribute to the efficacy of the treatments. In both tumor models, the nanobioconjugates significantly increased (up to 2-fold) animal survival compared with the PBS-treated control group. The versatile nanobioconjugates developed in this study, with the abilities of anti-cancer drug delivery across biobarriers and the inhibition of key tumor regulators, offer a promising nanotherapeutic approach to treat GBMs, and to potentially prevent drug resistance and retard the recurrence of brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Caseína Quinase II/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Nanoconjugados/uso terapêutico , Adulto , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Caseína Quinase II/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Feminino , Glioblastoma/metabolismo , Humanos , Malatos/química , Camundongos , Camundongos Nus , Nanoconjugados/química , Células-Tronco Neoplásicas , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Polietilenoglicóis/química , Polímeros/química , Transdução de Sinais , Propriedades de Superfície
15.
Macromol Biosci ; 15(9): 1212-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26036700

RESUMO

Currently, there is no gadolinium-based contrast agent available for conventional magnetic resonance imaging (MRI) detection of amyloidal beta (Aß) plaques in Alzheimer's disease (AD). Its timely finding would be vital for patient survival and quality of life. Curcumin (CUR), a common Indian spice effectively binds to Aß plaques which is a hallmark of AD. To address this binding, we have designed a novel nanoimaging agent (NIA) based on nature-derived poly(ß-l-malic acid) (PMLA) containing covalently attached gadolinium-DOTA(Gd-DOTA) and nature-derived CUR. The all-in-one agent recognizes and selectively binds to Aß plaques and is detected by MRI. It efficiently detected Aß plaques in human and mouse samples by an ex vivo staining. The method can be useful in clinic for safe and noninvasive diagnosis of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Meios de Contraste/química , Imageamento por Ressonância Magnética , Malatos/química , Placa Amiloide/diagnóstico , Polímeros/química , Animais , Encéfalo/patologia , Curcumina/análogos & derivados , Curcumina/química , Compostos Heterocíclicos/química , Humanos , Camundongos , Compostos Organometálicos/química
16.
J Vis Exp ; (88)2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24962356

RESUMO

Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Malatos/administração & dosagem , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Animais , Neoplasias da Mama/enzimologia , Feminino , Inativação Gênica , Humanos , Malatos/síntese química , Malatos/química , Malatos/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Physarum polycephalum/genética , Physarum polycephalum/metabolismo , Polímeros/síntese química , Polímeros/química , Polímeros/metabolismo , Medicina de Precisão/métodos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/biossíntese , Receptor ErbB-2/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biomaterials ; 34(1): 217-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063368

RESUMO

Anionic polymers are valuable components used in cosmetics and health sciences, especially in drug delivery, because of their chemical versatility and low toxicity. However, because of their highly negative charge they pose problems for penetration through hydrophobic barriers such as membranes. We have engineered anionic polymalic acid (PMLA) to penetrate biological membranes. PMLA copolymers of leucine ethyl ester (P/LOEt) or trileucine (P/LLL) show either pH-independent or pH-dependent activity for membrane penetration. We report here for the first time on the mechanisms which are different for those two copolymers. Formation of hydrophobic patches in either copolymer is detected by fluorescence techniques. The copolymers display distinctly different properties in solution and during membranolysis. P/LOEt copolymer binds to membrane as single molecules with high affinity, and induces leakage cooperatively through a mechanism known as "carpet" model, in which the polymer aligns at the surface throughout the entire process of membrane permeation. In contrast, P/LLL self-assembles to form an oligomer of 105 nm in a pH-dependent manner (pKa 5.5) and induces membrane leakage through a two-phase process: the concentration dependent first-phase of insertion of the oligomer into membrane followed by a concentration independent second-phase of rearrangement of the membrane-oligomer complex. The insertion of P/LLL is facilitated by hydrophobic interactions between trileucine side chains and lipids in the membrane core, resulting in transmembrane pores, through mechanism known as "barrel-stave" model. The understanding of the mechanism paves the way for future engineering of polymeric delivery systems with optimal cytoplasmic delivery efficiency and reduced systemic toxicity.


Assuntos
Malatos/farmacologia , Polímeros/farmacologia , Ésteres/química , Transferência Ressonante de Energia de Fluorescência , Hidrodinâmica , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Cinética , Lipossomos/química , Malatos/síntese química , Malatos/química , Membranas/anormalidades , Microscopia Confocal , Oligopeptídeos/química , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química , Rodaminas/metabolismo , Soluções , Temperatura
18.
J Drug Target ; 21(10): 956-967, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24032759

RESUMO

Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(ß-L-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and ß1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicity at low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and single-action precursor nanoconjugates were assessed under in vitro conditions and in vivo with multiple treatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo with different drugs included blood hematologic and immunologic analysis after multiple intravenous administrations. The present study demonstrates that the dual-action nanoconjugate is highly effective in preclinical TNBC treatment without side effects, supported by hematologic and immunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multiple toxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimized and efficacious for the treatment of cancer patients in the future.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Malatos/química , Polímeros/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Esquema de Medicação , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Laminina/metabolismo , Camundongos , Camundongos Nus , Nanoconjugados , Nanopartículas , Poliésteres/química , Coelhos , Neoplasias de Mama Triplo Negativas/patologia
19.
J Control Release ; 171(3): 322-9, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-23770212

RESUMO

Breast cancer remains the second leading cause of cancer death among women in the United States. Breast cancer prognosis is particularly poor in case of tumors overexpressing the oncoprotein HER2/neu. A new nanobioconjugate of the Polycefin(TM) family of anti-cancer drugs based on biodegradable and non-toxic polymalic acid (PMLA) was engineered for a multi-pronged attack on HER2/neu-positive breast cancer cells. An antibody-cytokine fusion protein consisting of the immunostimulatory cytokine interleukin-2 (IL-2) genetically fused to an antibody specific for human HER2/neu [anti-HER2/neu IgG3-(IL-2)] was covalently attached to the PMLA backbone to target HER2/neu expressing tumors and ensure the delivery of IL-2 to the tumor microenvironment. Antisense oligonucleotides (AON) were conjugated to the nanodrug to inhibit the expression of vascular tumor protein laminin-411 in order to block tumor angiogenesis. It is shown that the nanobioconjugate was capable of specifically binding human HER2/neu and retained the biological activity of IL-2. We also showed the uptake of the nanobioconjugate into HER2/neu-positive breast cancer cells and enhanced tumor targeting in vivo. The nanobioconjugate exhibited marked anti-tumor activity manifested by significantly longer animal survival and significantly increased anti-HER2/neu immune response in immunocompetent mice bearing D2F2/E2 murine mammary tumors that express human HER2/neu. The combination of laminin-411 AON and antibody-cytokine fusion protein on a single polymeric platform results in a new nanobioconjugate that can act against cancer cells through inhibition of tumor growth and angiogenesis and the orchestration of an immune response against the tumor. The present Polycefin(TM) variant may be a promising agent for treating HER2/neu expressing tumors and demonstrates the versatility of the Polycefin(TM) nanobioconjugate platform.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/uso terapêutico , Imunoglobulina G/uso terapêutico , Interleucina-2/uso terapêutico , Malatos/uso terapêutico , Polímeros/uso terapêutico , Receptor ErbB-2/imunologia , Animais , Mama/efeitos dos fármacos , Mama/imunologia , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunização , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Imunoglobulina G/imunologia , Interleucina-2/imunologia , Interleucina-2/farmacocinética , Malatos/farmacocinética , Camundongos , Camundongos Nus , Polímeros/farmacocinética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/uso terapêutico
20.
Int J Pharm ; 423(1): 84-92, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21550387

RESUMO

Design of an efficient site-specific drug delivery system based on degradable functional polymers still remains challenging. In this work, we synthesized and characterized three degradable functional polyesters belonging to the poly(malic acid) family: the poly(benzyl malate) (PMLABe), the poly(ethylene glycol)-b-poly(benzyl malate) (PEG(42)-b-PMLABe), the biotin-poly(ethylene glycol)-b-poly(benzyl malate) (Biot-PEG(62)-PMLABe). Starting from these building blocks, we were able to prepare the corresponding well-defined degradable functional nanoparticles whose toxicity was evaluated in vitro on normal and cancer cell lines. Results have evidenced that the prepared nanoparticles did not show any significant cytotoxicity even at high concentrations. A model anti-cancer drug (doxorubicin, Dox) or a fluorescent probe (1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, DiD oil) has been encapsulated into PMLABe, PEG(42)-PMLABe or Biot-PEG(62)-PMLABe based nanoparticles in order to evaluate, respectively, the in vitro cytotoxicity of Dox-loaded nanoparticles on normal and cancer cell lines and the ligand (biotin) effect on cellular uptake in vitro using mmt 060562 cell line. Dox-loaded PMLABe, PEG(42)-PMLABe or Biot-PEG(62)-PMLABe nanoparticles showed an in vitro cytotoxicity similar to that of free Dox. Moreover, the DiD oil loaded Biot-PEG(62)-PMLABe based nanoparticles showed a better in vitro cellular uptake than ligand-free DiD oil loaded nanoparticles. Both results evidence the great potential of such degradable functional poly(malic acid) derivatives for the design of highly efficient site-specific anti-cancer nanovectors.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Malatos/química , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/farmacologia , Biotina/química , Carbocianinas/administração & dosagem , Carbocianinas/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Humanos , Camundongos , Estrutura Molecular , Nanopartículas/toxicidade , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/síntese química , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA