Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 27: 102199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275957

RESUMO

Carvedilol (CAR), a ß-adrenoceptor and α1-receptor blocker, has pH-dependent solubility, which greatly limits its oral bioavailability. In this work, a precipitation inhibitor-based self-nanoemulsifying drug delivery system (PI-SNEDDS) was developed by employing Soluplus and Poloxamer 407 to improve drug dissolution and to inhibit drug precipitation in the gastrointestinal tract. In vitro phase distribution and in vivo dissolution studies indicated that PI-SNEDDS significantly increased drug content in the oil phase of the nanoemulsions in the stomach and greatly inhibited the subsequent precipitation of CAR in the intestine compared with the carvedilol self-nanoemulsifying drug delivery system (CAR SNEDDS) and the carvedilol tablets. Moreover, a 1.56-fold increase in the relative bioavailability of CAR was observed for the CAR PI-SNEDDS (397.41%) compared to a CAR SNEDDS (254.09%) with commercial capsules as a reference. Therefore, our developed PI-SNEDDS is a promising vehicle for improving the dissolution and bioavailability of poorly soluble drugs with pH-dependent solubility.


Assuntos
Carvedilol/farmacologia , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas/química , Receptores Adrenérgicos beta/genética , Administração Oral , Animais , Disponibilidade Biológica , Carvedilol/química , Trato Gastrointestinal/patologia , Humanos , Poloxâmero/química , Poloxâmero/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polivinil/química , Polivinil/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta/química
2.
J Mater Chem B ; 8(31): 6739-6752, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686806

RESUMO

Trigonal molecules have a special triskelion structure similar to clathrin protein, providing great inspiration for constructing artificial nanoassemblies. To date, various synthetic trigonal conjugates have been designed for supramolecular self-assembly, which have demonstrated versatile and controllable self-assembly ability in materials science. Here we will review the design of trigonal (sometimes called three-legged, tripodal, C3-symmetric, or triskelion) building blocks that can self-assemble into various nanostructures and discuss the biomedical applications of the self-assembled nanomaterials.


Assuntos
Materiais Biocompatíveis/química , Desenho de Fármacos , Nanoestruturas/química
3.
Adv Healthc Mater ; 9(21): e2001118, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985134

RESUMO

Photoresponsive drug release systems can enhance drug accumulation at the sites where light is applied. Nowadays, the photocleavable groups used in the systems usually require ultraviolet or blue light irradiation, which limits tissue penetration depth and is harmful to normal cells and living bodies. A one-photon upconversion-like photolysis strategy, which can cleave green light-activatable prodrugs with red light at the presence of a red light-excitable photosensitizer in organic solvents, is developed. However, both the prodrug and photosensitizer are hydrophobic and their energy transfer process is sensitive to oxygen molecules. Here, a simple strategy to address these problems by loading the two components in biocompatible and biodegradable polymeric micelles, is presented. The developed low-irradiance red light-triggered drug release system has a size around 40 nm and exhibits good stability in aqueous solutions. The micellar encapsulation protects the photolysis reaction from oxygen quenching in normoxia aqueous solutions. The therapeutic effect of the system enhanced by the redlight irradiation is demonstrated through in vitro and in vivo studies, indicating promising potential in cancer therapy. The study provides the first example and also an important reference for applying one-photon upconversion-like photolysis in biomedical applications.


Assuntos
Nanopartículas , Pró-Fármacos , Liberação Controlada de Fármacos , Micelas , Fotólise , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA