Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 6(11): 9879-86, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23020587

RESUMO

The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩµm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos Orgânicos/química , Semicondutores , Impedância Elétrica , Teste de Materiais , Tamanho da Partícula
2.
Adv Mater ; 24(20): 2692-8, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22511330

RESUMO

Control over the molecular orientation in organic thin films is demonstrated with precise in-plane spatial resolution over large areas. By exploiting the differential crystallization rates on substrates with different surface energies, the radial symmetry of spherulitic growth can be disrupted by preferentially selecting the molecular orientations that promote growth along the paths of the underlying patterns.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Membranas Artificiais , Minerais/química , Compostos Orgânicos/química , Tiofenos/química , Cristalografia/instrumentação , Cristalografia/métodos , Desenho de Equipamento , Polímeros/química , Dióxido de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA