RESUMO
Medium-low temperature pyrolysis is an effective method of retaining active components in sludge char. However, we found that incomplete cracking reactions resulted in residues of microplastics (MPs) remaining in the char; moreover, high levels of environmentally persistent free radicals (EPFRs) were detected in these MPs. Here, we investigated the temperature-dependent variations in the char-volatile products derived from sludge and MPs under different pyrolysis scenarios using multiple in situ probe coupling techniques and electron paramagnetic resonance spectroscopy, thereby identifying the sources of EPFRs and elucidating the corresponding formation-conversion mechanisms. The temperature was the key factor in the formation of EPFRs; in particular, in the 350-450 °C range, the abundance of EPFRs increased exponentially. Reactive EPFR readily formed in MPs with conjugated aromatic-ring structures (polyethylene terephthalate and polystyrene) at a temperature above 350 °C; EPFR concentrations were 5-17 times higher than those found in other types of polymers, and these radicals exhibited half-lives of more than 90 days. The EPFR formation mechanism could be summarized as solid-solid/solid-gas interfacial interactions between the polymers and the intermediate products from sludge pyrolysis (at 160-350 °C) and the homolytic cleavage-proton transfer occurring in the polymers themselves under the dual action of thermal induction and acid sites (at 350-450 °C). Based on the understanding of the evolution of EPFRs, temperature regulation and sludge components conditioning may be effective approaches to inhibit the formation of EPFRs in MPs, constituting reliable strategies to diminish the environmental risk associated with the byproducts of sludge pyrolysis.
Assuntos
Pirólise , Esgotos , Esgotos/química , Microplásticos , Plásticos , Temperatura , Radicais Livres/química , PolímerosRESUMO
Plastic recycling is critical for dematerializing of plastics. It has a profound implication on decoupling economic growth from environmental pressure and advancing waste plastic governance domestically and internationally while identifying drivers that might improve decoupling. In this study, plastic consumption and recycling patterns are presented, and the factors influencing the acceleration of dematerialization subsequent to the ban were investigated in the G7 countries and China. The results show that plastic consumption increases from 7.60 million metric tons (mt) to 12.60 mt between 2017 and 2019, and subsequently rapidly decreases to 6.84 mt in 2020. The plastic recycling rate drastically decreased by 21.3% in 2017, and decreased slightly from 2017 to 2020, at an annual rate of 2.9% on average. China's ban shocked the decoupling trends, which showed resilience and motivated the development of robust plastic recycling, and the global recycling transformation pattern accelerated the dematerialization of plastics. Decoupling performances of the G7 and China gradually stabilized in 2019, and all the countries were strongly decoupled in 2020, although decoupling index (DI) fluctuates from 2017 to 2020. Among the recycling-trading drivers, the improvement of waste plastic quality in recycling contributes more to decoupling, the recycling rate shows a more negative decoupling effect on China before the ban, and the population effect is weak relative to other influencing factors. The factors revealed the mechanism of decoupling of plastic consumption in the recycling-trading process, and the recyclability improvement in terms of plastic quality is important for dematerialization.
Assuntos
Desenvolvimento Econômico , Plásticos , China , ReciclagemRESUMO
Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.
Assuntos
Carbono/química , Esgotos/química , Hipoclorito de Sódio/química , Adsorção , Biopolímeros/química , Eletroquímica , Azul de Metileno/química , Porosidade , Cloreto de Potássio/química , Propriedades de Superfície , Poluentes Químicos da Água/químicaRESUMO
Microplastics (MPs) can enter aquatic food webs through direct ingestion from the environment or indirectly via trophic transfer, but their fate and biological effects within local freshwater food chains remain largely unexplored. In this study, we conducted the first investigation on the trophic transfer and impacts of fluorescently labeled polystyrene microplastics (PS-MPs) (100-nm and 10-µm) in a model freshwater food chain consisting of the snail Bellamya aeruginosa and the commercially important fish Mylopharyngodon piceus, both prevalent in Chinese freshwater ecosystems. Quantitative analysis revealed substantial accumulation of MPs in B. aeruginosa, reaching an equilibrium state within 12 h of exposure. While steady-state was not observed, a pronounced time-dependent bioaccumulation of MPs was evident in M. piceus over a five-week period following dietary exposure through the consumption of contaminated B. aeruginosa. Notably, MPs of both sizes underwent translocation from the gastrointestinal tract to the muscle tissue in M. piceus. High-throughput sequencing of the gut microbiota revealed that exposure to 100-nm MPs significantly altered the microbial community composition in M. piceus, and both particle sizes led to increased relative abundance of potentially pathogenic bacterial genera. Our findings provide novel insights into the trophic transfer, tissue accumulation, and biological impacts of MPs in a model freshwater food chain, highlighting the need for further research to assess the ecological and food safety risks associated with microplastic pollution in freshwater environments.
Assuntos
Ecossistema , Cadeia Alimentar , Água Doce , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água Doce/química , Caramujos , Monitoramento Ambiental , ChinaRESUMO
The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.
Assuntos
Diatomáceas , Poluentes Químicos da Água , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Clorofila A , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/metabolismoRESUMO
Plastics in landfills undergo a unique micronization process due to multi-factor and light-avoided conditions, but their aging process in such a typical environment remains unexplored. This study investigated the aging behavior of polyethylene plastics, representative of landfills, under simulated dynamic mechanical forces and high temperature-two prevalent environmental factors in landfills. The study explored the individual and combined contributions of these factors to the aging process. Results indicated that high temperature played a primary role in aging plastics by depolymerization and degradation through ·OH production, while mechanical forces contributed mainly to surface structure breakdown. The combined effect leads to more serious surface damage, creating holes, cracks, and scratches that provide access for free radical reactions to plastic bulk, thereby accelerating the aging and micronization process. The resulting microplastics were found to be 14.25 ± 0.53 µg L-1. Aged plastics exhibit a rapid aging rate of depolymerization and oxidation compared to virgin plastics due to their weak properties, suggesting a higher potential risk of microplastic generation. This study fills a knowledge gap regarding the aging behavior of plastics under complex and light-avoided landfill conditions, emphasizing the need for increased attention to the evolution process of microplastics from aged plastic waste in landfills.
Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Plásticos/química , Microplásticos , Instalações de Eliminação de ResíduosRESUMO
Landfills are the main plastic sinks and microplastics (MPs) sources in the anthropogenic terrestrial system. Understanding the dynamic process of generating MPs is a prerequisite to reducing their potential risk, which remains unexplored because of the complex stabilization process of landfills. In this study, we investigated the evolution process of MPs generated in a partitioned landfill, with well-recorded disposal ages of over 30 years. Considering the initial plastic proportions in fresh landfilled waste, the occurrence of MPs increased exponentially with the disposal age. A booming generation of MPs occurred from 71.3 ± 17.7 items/(g plastic) to 653.1 ± 191.5 items/(g plastic). The generation rates of MPs varied greatly depending on the individual polymer types, with polyethylene (PE) having the highest generation rate of 28.4 items/(g plastic) per year at 31 years, compared to that of polypropylene (PP) and polystyrene (PS) at 15.0 and 9.6 items/(g plastic) per year, respectively. The variation in the carbonyl index indicated that environmental oxidation might facilitate the fragmentation of plastic waste. The relative abundance of plastic-degrading microbes increased more than three times in the plastisphere after 30 years of landfilling, indicating that the potential biodegradation might be a nonnegligible driver for plastic fragmentation after long-term natural acclimatization. This study revealed the dynamic evolution process of MPs in landfills and predicted the booming stage, which might provide an important guideline for reducing the leakage risk of MPs during the reclamation of old landfills or dumping sites.
Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Polietileno , Polipropilenos , Poliestirenos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análiseRESUMO
A novel nanocomposite, named as nZVI@LH, was prepared by nanoscale zero-valent iron (nZVI) supported on lignin hydrogel and was used in the remediation of Cr(VI)-contaminated soil collected from an industrial site. Meanwhile, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffractometry (XRD) results determined that nZVI nanoparticles disperse uniformly on hydrogel. After the 14 days remediation, the immobilization efficiency of Cr(VI) could reach over 87% in the treatment of 3% (w/w%) nZVI@LH and 26% in the treatment of bare-nZVI. Leaching experiment results showed that the treatment group with 3% (w/w%) nZVI@LH was up to the national leaching toxicity identification standard, and there was no threat in simulation of acid rain over the long term. The water-soluble (WS) fraction in 3# nZVI@LH treatment decreased 31.1%, while the Fe-Mn oxide bound (OX) fraction and organic matter-bound (OM) fraction increased 10.9% and 13.4%, respectively. Moreover, nZVI@LH had limited impact on soil properties and the capability to immobilize Cr over a long period exposure to acid rain. This work prove that nZVI@LH has the potential to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.
Assuntos
Chuva Ácida , Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Cromo/análise , Hidrogéis , Ferro , Lignina , Solo , Poluentes do Solo/análise , Poluentes Químicos da Água/análiseRESUMO
A novel hydrogel-supported nanoscale zero-valent iron (nZVI) composite (nZVI@LH) was synthesized by ion exchange and in-situ reduction. The removal efficiency was tested, and the mechanism was also explored. The nZVI@LH at the precursor Fe(II) ion concentration of 0.1 mol/L presented an enhanced Cr(VI) removal capacity of 310.86 mg/g Fe0 at pH 5.3, which was 11.6 times more than that of the pure nZVI. The removal efficiency of the composite at pH 2.1 was more than double compared with alkaline or neutral conditions. Scanning electron microscopy (SEM) suggested that the nZVI particles were uniformly immobilized in the lignin hydrogel. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) provided evidence supporting the removal mechanism. According to the XPS results, the high removal capacity of the composite was attributed to chemical reduction/precipitation (69.7%), surface sorption (19.7%), and swelling uptake (10.6%). The pseudo-first-order reduction kinetics and pseudo-second-order kinetic model were employed to simulate the kinetic data, which supported the mechanism that chemical reduction and surface sorption could simultaneously remove Cr(VI). The electron acceptor and electron donor affected the reaction rate, and the presence of humic acid significantly inhibited the reaction. The present study demonstrated that lignin hydrogel acted as a carrier to prevent aggregation of nZVI particles. nZVI particles loaded on lignin hydrogel showed high reactivity and high degree of utilization compared with bare-nZVI. These results exhibited the great potential of nZVI@LH in practical water treatment due to its high activity.
Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Cromo/química , Hidrogéis , Ferro/química , Lignina , Poluentes Químicos da Água/análiseRESUMO
Nanoscale zero-valent iron (nZVI) modified by cationic polyquaternium-7 (M550-nZVI) or anionic carboxymethyl cellulose (CMC-nZVI) were freshly synthesized, and followed by the successful applicability for the stabilization of Cr(VI) in soil. Scanning electron microscope (SEM) showed that the sizes of M550-nZVI and CMC-nZVI were 42-170â¯nm and 66-200â¯nm, respectively. X-ray diffraction (XRD) confirmed the presence of Fe0 and Fe3C in the as-synthesized composites. The kinetics were well fitted with pseudo-second order model (R2â¯>â¯0.99), indicating that the process was principally chemical reduction. Additionally, we observed that M550-nZVI had better resistance to oxidation than that of CMC-nZVI. Besides, RSM experiments showed that acetate ion (AA) could promote the Cr(VI) removal but humic acid ion (HA) and carbonate ion (CA) resulted in negative effects. Moreover, the modeling predication revealed that the optimum Cr(VI) removal of 92.44% by CMC-nZVI was available, being 22.52% higher than that of M550-nZVI. In conclusion, this work demonstrated that the inoxidizability of M550-nZVI had a dominant advantage, while CMC-nZVI had the more excellent reactivity than M550-nZVI. We believe that our conducted research work will open the new avenues for effective removal of heavy metals from the soil.
Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Cromo/análise , Cinética , Polímeros , Solo , Poluentes Químicos da Água/análiseRESUMO
In this study, poly dimethyl diallyl ammonium chloride (PDADMAC) and polyacrylamide (PAM) were applied to substitute ferric trichloride (FeCl3) and lime conditioning for advanced dewatering of landfill sludge (LS). Four response surface methodology (RSM) models were constructed for FeCl3-lime, FeCl3-PAM, PDADMAC-lime and PDADMAC-PAM, and identical dosages, namely 29.86, 57.91, 5.73 and 2.99 mg/g dry solids (DS) for FeCl3, lime, PDADMAC and PAM, were obtained by solving the system of four RSM equations at water content of 60% to investigate conditioning mechanisms. Compared to FeCl3-lime, PDADMAC-PAM conditioning had strong charge neutralization and bridging performance, and obtained conditioned LS with large flocs size, strong network structure and rapid dewatering rate. By integrating RSM with nonlinear programming for optimization, the total cost of PDADMAC-PAM route was saved by 7.9% and close to FeCl3-lime, and the optimized condition with dosages of 1.93 and 3.47 kg/t DS was further confirmed by pilot-scale experiments. The results indicated that PDADMAC-PAM was a feasible substitute for FeCl3-lime in sludge conditioning, and showed more advantage if dewatered sludge was further treated by incineration.
Assuntos
Eliminação de Resíduos Líquidos/métodos , Resinas Acrílicas , Compostos de Cálcio , Floculação , Ferro/química , Óxidos , Polímeros , Esgotos/química , Instalações de Eliminação de Resíduos , ÁguaRESUMO
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH4+, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW<1kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu2+ was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48h with leachate in the ratio of 5g of sample per 50ml of leachate. Cu2+ uptake by the raw soil was approximately 4.60microg/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11microg/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu2+.
Assuntos
Cobre/química , Eliminação de Resíduos/métodos , Solo/análise , Poluentes Químicos da Água/química , Adsorção , Poluição Ambiental/prevenção & controle , Membranas ArtificiaisRESUMO
Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid size distribution and variations of leachate. These leachates were separated using micro-filtration and ultra-filtration into specific size fractions, i.e., suspended particles (SP) (> 1.2 microm), coarse colloids (CC) (1.2-0.45 microm), fine colloids (FC) (0.45 microm, 5 kDa/1 kDa molecular weight (MW)), and dissolved organic matters (DM, < 5 kDa/1 kDa MW). The specific colloids in each size fraction were quantified and characterized through chemical oxygen demands (COD), total solid (TS), pH, NH4+-N, total organic carbon (TOC) and fixed solid (FS). It was found that COD, NH4+-N and TS in leachate decreased significantly over ages, while pH increased. The dissolved fractions (< 5 kDa/1 kDa) dominated (over 50%) in three leachates in terms of COD, and the organic matter content in dissolved fraction of leachates decreased and the inorganic matter increased as the disposal time extended, with the TOC/COD ratio 30%-7%. Dissolved fractions decreased from 82% to 40% in terms of TOC as the disposal time extended, suggested that the organic matter remained in leachate would form into middle molecular weight substances during the degradation process.
Assuntos
Eliminação de Resíduos , Filtração , Membranas Artificiais , PorosidadeRESUMO
Quantum dots (QDs) have emerged as alternative or complementary tools to organic fluorescent dyes currently used in bioimaging. QDs hold several advantages over conventional fluorescent dyes including greater photostability and a wider range of excitation/emission wavelengths. However, recent work suggests that QDs exert deleterious effects on cellular processes which could obscure bioassay results. This study examined the toxicity of octylamine-poly(acrylic acid) (OPA) modified CdSe/ZnS quantum dots (QDs) and a pharmacological means of preventing QD-induced cell death. Cell viability and the flow cytometry were used to access the toxicity of OPA-modified CdSe/ZnS QDs to human skin cells following a 24-h exposure. It is found that concentrations leading to a 50% reduction in malignant melanoma cell viability (TC50) for two OPA-QDs (QD545 and QD605) are 102.1, 57.3 nM in A375 cells and 67.2, 55.0 nM in A375.S2 cells, respectively. Moreover, QD545 and QD605 show low cytotoxic response in HaCaT keratinocyte cells with TC50 values of 818.2 nM and 162.0 nM, respectively. Silibinin, a natural product derived from milkweed thistle, is known for its powerful antioxidant and membrane stabilizing properties. Pretreatment of cells with silibinin, significantly reduced QD-induced cell death in A375 and A375-S2 cells. These findings suggest that QD cytotoxicity is sensitive to cell types and that pretreatment with antioxidants, such as the natural product silibinin, can modulate QD-induced cytotoxicity.
Assuntos
Resinas Acrílicas/química , Aminas/química , Compostos de Cádmio/química , Pontos Quânticos , Compostos de Selênio/química , Silimarina/farmacologia , Pele/citologia , Sulfetos/química , Compostos de Zinco/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Luz , Espalhamento de Radiação , Silibina , Silimarina/química , Pele/efeitos dos fármacos , Espectrometria de FluorescênciaRESUMO
The use of highly specific and highly sensitive quantum dots immunofluorescent label is a promising approach for biomedical imaging in cancer cells. Human melanoma cell adhesion molecule CD146, overexpressed on the surface of melanoma cells, is an important target for melanoma diagnostics. We synthesized PEG-COOH capped highly fluorescent CdSe/ZnS QDs and conjugated them with streptavidin to prepare QD-SA label. Then, we used QD-SA to link with biotinylated goat anti-mouse IgG and mouse anti-human CD146 to label CD146 overexpressed on live and fixed cells by FACS and Confocal microscopy. Labeling of target cells was shown to have high brightness, photostability, and specificity. Advantages of QD conjugates over FITC conjugates are discussed. The results indicate that construction based on QD-SA label, biotinylated IgG and CD146 antibody can be successfully used for detection of melanoma cells for biomedical applications.