Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(44): e1802624, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30260563

RESUMO

Protein-based electronic materials have numerous potential advantages with respect to sustainability and biocompatibility over electronic materials that are synthesized using harsh chemical processes and/or which contain toxic components. The microorganism Geobacter sulfurreducens synthesizes electrically conductive protein nanowires (e-PNs) with high aspect ratios (3 nm × 10-30 µm) from renewable organic feedstocks. Here, the integration of G. Sulfurreducens e-PNs into poly(vinyl alcohol) (PVA) as a host polymer matrix is described. The resultant e-PN/PVA composites exhibit conductivities comparable to PVA-based composites containing synthetic nanowires. The relationship between e-PN density and conductivity of the resultant composites is consistent with percolation theory. These e-PNs confer conductivity to the composites even under extreme conditions, with the highest conductivities achieved from materials prepared at pH 1.5 and temperatures greater than 100 °C. These results demonstrate that e-PNs represent viable and sustainable nanowire compositions for the fabrication of electrically conductive composite materials.


Assuntos
Nanocompostos/química , Nanofios/química , Geobacter/metabolismo , Polímeros/metabolismo
2.
Water Res ; 219: 118553, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561622

RESUMO

Shewanella oneidensis MR-1 is an attractive model microbe for elucidating the biofilm-metal interactions that contribute to the billions of dollars in corrosion damage to industrial applications each year. Multiple mechanisms for S. oneidensis-enhanced corrosion have been proposed, but none of these mechanisms have previously been rigorously investigated with methods that rule out alternative routes for electron transfer. We found that S. oneidensis grown under aerobic conditions formed thick biofilms (∼50 µm) on stainless steel coupons, accelerating corrosion over sterile controls. H2 and flavins were ruled out as intermediary electron carriers because stainless steel did not reduce riboflavin and previous studies have demonstrated stainless does not generate H2. Strain ∆mtrCBA, in which the genes for the most abundant porin-cytochrome conduit in S. oneidensis were deleted, corroded stainless steel substantially less than wild-type in aerobic cultures. Wild-type biofilms readily reduced nitrate with stainless steel as the sole electron donor under anaerobic conditions, but strain ∆mtrCBA did not. These results demonstrate that S. oneidensis can directly consume electrons from iron-containing metals and illustrate how direct metal-to-microbe electron transfer can be an important route for corrosion, even in aerobic environments.


Assuntos
Elétrons , Aço Inoxidável , Biofilmes , Corrosão , Transporte de Elétrons , Metais , Oxirredução , Aço
3.
Nat Commun ; 12(1): 3351, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099691

RESUMO

Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration.


Assuntos
Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanofios , Materiais Biocompatíveis , Eletrônica/instrumentação , Redes Neurais de Computação , Proteínas , Sinapses/fisiologia
4.
ISME J ; 15(10): 3084-3093, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972726

RESUMO

Microbial corrosion of iron-based materials is a substantial economic problem. A mechanistic understanding is required to develop mitigation strategies, but previous mechanistic studies have been limited to investigations with relatively pure Fe(0), which is not a common structural material. We report here that the mechanism for microbial corrosion of stainless steel, the metal of choice for many actual applications, can be significantly different from that for Fe(0). Although H2 is often an intermediary electron carrier between the metal and microbes during Fe(0) corrosion, we found that H2 is not abiotically produced from stainless steel, making this corrosion mechanism unlikely. Geobacter sulfurreducens and Geobacter metallireducens, electrotrophs that are known to directly accept electrons from other microbes or electrodes, extracted electrons from stainless steel via direct iron-to-microbe electron transfer. Genetic modification to prevent H2 consumption did not negatively impact on stainless steel corrosion. Corrosion was inhibited when genes for outer-surface cytochromes that are key electrical contacts were deleted. These results indicate that a common model of microbial Fe(0) corrosion by hydrogenase-positive microbes, in which H2 serves as an intermediary electron carrier between the metal surface and the microbe, may not apply to the microbial corrosion of stainless steel. However, direct iron-to-microbe electron transfer is a feasible route for stainless steel corrosion.


Assuntos
Geobacter , Corrosão , Elétrons , Geobacter/genética , Ferro , Aço Inoxidável
5.
Bioresour Technol ; 220: 516-522, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27611035

RESUMO

The aim of this work was to study the methanogenic metabolism of dog food, a food waste surrogate, in laboratory-scale reactors with different carbon-based conductive materials. Carbon cloth, carbon felt, and granular activated carbon all permitted higher organic loading rates and promoted faster recovery of soured reactors than the control reactors. Microbial community analysis revealed that specific and substantial enrichments of Sporanaerobacter and Methanosarcina were present on the carbon cloth surface. These results, and the known ability of Sporanaerobacter species to transfer electrons to elemental sulfur, suggest that Sporanaerobacter species can participate in direct interspecies electron transfer with Methanosarcina species when carbon cloth is available as an electron transfer mediator.


Assuntos
Carbono/química , Condutividade Elétrica , Compostos Orgânicos/análise , Resíduos , Anaerobiose , Animais , Bactérias/metabolismo , Reatores Biológicos , Fibra de Carbono , Carvão Vegetal/química , Cães , Ácidos Graxos Voláteis/análise , Concentração de Íons de Hidrogênio , Metano/biossíntese
6.
Bioresour Technol ; 173: 82-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25285763

RESUMO

This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.


Assuntos
Carbono/química , Comunicação Celular/fisiologia , Técnicas de Cocultura/métodos , Membranas Artificiais , Condutividade Elétrica , Transporte de Elétrons , Geobacter , Teste de Materiais , Consórcios Microbianos , Oxirredução , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA