Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochem Anal ; 34(5): 560-570, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202874

RESUMO

INTRODUCTION: Lanqin Oral Liquid (LQL) is a traditional Chinese medicine preparation (TCMP) containing five herbal medicines and has been commonly used for the treatment of pharyngitis and hand-foot-and-mouth disease in clinic. The material basis of LQL has been reported in our previous study, but the contents of the major components and the features of saccharide in LQL are still unclear. OBJECTIVES: This study aimed to establish accurate and rapid methods for the quantification of the major components and profiling of saccharide in LQL. The quantitative results combined with similarity evaluation were applied to improve the quality control of LQL. METHODOLOGY: An ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QQQ-MS) method was utilised to determine 44 major components. Cosine similarity was used to evaluate the similarities among 20 batches of LQL based on the quantitative results of 44 major components. The physicochemical properties, structure, composition, and contents of saccharide in LQL were detected by a combination of chemical and instrumental analysis. RESULTS: A total of 44 compounds, including flavonoids, iridoid glycosides, alkaloids, and nucleosides, were accurately determined. The 20 batches of LQL were remarkably similar (> 0.95). In addition, d-glucose, galactose, d-glucuronic acid, arabinose, and d-mannose were detected in saccharide of LQL. The contents of saccharide in LQL were 13.52-21.09 mg/ml. CONCLUSIONS: The established methods can be applied for the comprehensive quality control of LQL, including characterisation of saccharide and quantification of representative components. Our study will provide a robust chemical foundation for disclosing the quality markers of its therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Espectrometria de Massas em Tandem/métodos , Flavonoides/análise , Controle de Qualidade , Cromatografia Líquida de Alta Pressão/métodos
2.
Adv Sci (Weinh) ; 10(2): e2202815, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453583

RESUMO

Due to the ongoing development of portable/mobile electronics, sources to power have received widespread attention. Compared to chemical batteries as power sources, triboelectric nanogenerators (TENGs) possess lots of advantages, including the ability to harvest energy via human motions, flexible structures, environment-friendliness, and long-life characteristics. Although many self-healable TENGs are reported, the achievement of a muscle-like elasticity and the ability to recover from inevitable damage under extreme conditions (such as a high/low temperature and/or humidity) remain a challenge. Herein, a "double-terminal aromatic disulfide" on a structure with zwitterions as branched chains is reported to engineer the high-efficient self-healable elastomer for application in a flexible TENG. The as-designed material exhibits a repeatable elastic recovery (at 250% elongation) and a self-healing efficiency with an ultimate tensile stress of 96% over 2 h, representing an improvement on previously reported disulfide-based elastomers. The elastomer can autonomously recover by 50% even at a subzero temperature of -30 °C within 24 h. The elastomer-based TENG, as a self-driven sensor for detecting human behavior, is demonstrated to exhibit stable outputs and self-healing in the temperature range of -30 to 60 °C, and so is expected to promote the development of self-powered electronics for next-generation human-machine communications.


Assuntos
Temperatura Baixa , Elastômeros , Humanos , Elasticidade , Dissulfetos , Fontes de Energia Elétrica
3.
J Control Release ; 144(2): 190-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20184932

RESUMO

BMP-2 is one of the most important growth factors of bone regeneration. Polylactide-co-glycolic acid (PLGA), which is used as a biodegradable scaffold for delivering therapeutic agents, has been intensively investigated. In previous studies, we synthesized a novel BMP-2-related peptide (designated P24) and found that it could enhance the osteoblastic differentiation of bone marrow stromal cells (BMSCs). The objective of this study was to construct a biomimetic composite by incorporating P24 into a modified PLGA-(PEG-ASP)n copolymer to promote bone formation. In vitro, our results demonstrated that PLGA-(PEG-ASP)n scaffolds were shown to be an efficient system for sustained release of P24. Significantly more BMSCs attached to the P24/PLGA-(PEG-ASP)n and PLGA-(PEG-ASP)n membranes than to PLGA, and the cells in the two groups subsequently proliferated more vigorously than those in the PLGA group. The expression of osteogenic markers in P24/PLGA-(PEG-ASP)n group was stronger than that in the PLGA-(PEG-ASP)n and PLGA groups. Radiographic and histological examination, Western blotting and RT-PCR showed that P24/PLGA-(PEG-ASP)n scaffold could induce more effective ectopic bone formation in vivo, as compared with PLGA-(PEG-ASP)n or gelatin sponge alone. It is concluded that the PLGA-(PEG-ASP)n copolymer is a good P24 carrier and can serve as a good scaffold for controlled release of P24. This novel P24/PLGA-(PEG-ASP)n composite promises to be an excellent biomaterial for inducing bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Asparaginase , Materiais Biocompatíveis/metabolismo , Biomimética , Proteína Morfogenética Óssea 2 , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Durapatita/metabolismo , Glicolatos , Masculino , Células-Tronco Mesenquimais/metabolismo , Peptídeos/metabolismo , Poliésteres , Polietilenoglicóis , Polímeros/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Ai Zheng ; 25(12): 1459-63, 2006 Dec.
Artigo em Zh | MEDLINE | ID: mdl-17166367

RESUMO

BACKGROUND & OBJECTIVE: Biodegradable colloidal nano-micelles is a novel targeting drug delivery and controlled release system, which could prolong the biological half-life and lighten the toxicity of chemotherapeutant, meanwhile, present fine biocompatibility. This study was to prepare the biodegradable 5-fluorouracil (5-FU)/DEX-g-PLA nano-micelles, and investigate their killing effect on hepatocarcinoma cell line HepG2 in vitro and in vivo. METHODS: 5-FU/DEX-g-PLA nano-micelles were prepared by 'self-assembly'. Its morphology was observed by transmission electron microscopy. The encapsulating efficiency of 5-FU was determined by ultraviolet spectrophotometry. The in vivo releasing of 5-FU from nano-micelles was investigated by high-performance liquid chromatography (HPLC). The inhibitory effect of 5-FU/DEX-g-PLA on HepG2 cells in vitro was measured by MTT assay. RESULTS: 5-FU/DEX-g-PLA nano-micelles were round or elliptical; the diameter was about 50 nm. The encapsulating efficiency was about 9.3%. The concentration of 5-FU released from 5-FU/DEX-g-PLA nano-micelles was sustained for longer time than that of the naked drug. The in vitro inhibition rate of cell growth was similar in 5-FU/DEX-g-PLA group and naked 5-FU group (58.8% vs. 58.0%, P>0.05); the in vivo inhibition rate of tumor growth was significantly higher in 5-FU/DEX-g-PLA group than in naked 5-FU group (73.1% vs. 57.5%, P<0.05). CONCLUSION: 5-FU/DEX-g-PLA nano-micelles can effectively inhibit the growth of HepG2 cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Dextranos , Feminino , Fluoruracila/farmacocinética , Lactatos , Masculino , Camundongos , Micelas , Nanopartículas , Transplante de Neoplasias , Polietilenoglicóis , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA