Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Esthet Restor Dent ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605591

RESUMO

OBJECTIVES: The abutments produced with circular symmetry failed to accurately replicate the natural teeth's cervical shapes. The purpose of this study was to measure cervical cross-sections of maxillary anterior teeth using cone beam computed tomography (CBCT) images to design anatomic healing abutments. MATERIALS AND METHODS: CBCT data of 61 patients were analyzed using Ez3D Plus software. Measurements were taken at the cemento-enamel junction (CEJ) and 1 mm coronal to CEJ for maxillary central incisors, lateral incisors, and canines. Various parameters, including area, perimeter, and eight line segments in the distal (a), disto-palatal (b), palatal (c), mesio-palatal (d), mesial (e), mesio-labial (f), labial (g), and disto-labial (h) directions, were used to describe dental neck contours. The ratios (f/b and h/d) were analyzed, and differences based on sex and dental arch morphology were explored. RESULTS: Significant differences were found in area and perimeter between males and females, but not in f/b and h/d ratios. Differences in the f/b ratio were observed among dental arch morphologies for maxillary central incisors, lateral incisors, and canines. CONCLUSIONS: CBCT measurements of cervical cross-sections provide more accurate data for designing anatomic healing abutments. The fabrication of anatomical healing abutments needs to consider the influence of gender on cervical size and to explore the potential effect of arch shape on cervical morphology. CLINICAL SIGNIFICANCE: The novel method provides detailed measurements for the description of dental cervical contours for patients with bilateral homonymous teeth missing. The measurements of this study could be utilized to design more accurate anatomic healing abutments to create desired morphology of peri-implant soft tissue.

2.
Environ Sci Technol ; 57(25): 9174-9183, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37311089

RESUMO

Plastic film mulching and urea nitrogen fertilization are widely used in agricultural ecosystems, but both their long-term use may leave a negative legacy on crop growth, due to deleterious effects of plastic and microplastic accumulation and acidification in soil, respectively. Here, we stopped covering soil with a plastic film in an experimental site that was previously covered for 33 years and compared soil properties and subsequent maize growth and yield between plots that were previously and never covered with the plastic film. Soil moisture was about 5-16% higher at the previously mulched plot than at the never-mulched plot, but NO3- content was lower for the former when with fertilization. Maize growth and yield were generally similar between previously and never-mulched plots. Maize had an earlier dough stage (6-10 days) in previously mulched compared to never-mulched plots. Although plastic film mulching did add substantial amounts of film residues and microplastic accumulation into soils, it did not leave a net negative legacy (given the positive effects of the mulching practice in the first place) for soil quality and subsequent maize growth and yield, at least as an initial effect in our experiment. Long-term urea fertilization resulted in a pH decrease of about 1 unit, which bring a temporary maize P deficiency occurring in early stages of growth. Our data add long-term information on this important form of plastic pollution in agricultural systems.


Assuntos
Plásticos , Solo , Solo/química , Zea mays , Nitrogênio/análise , Microplásticos , Ecossistema , Água , Agricultura , Ureia , Fertilização , China
3.
Anal Chem ; 94(50): 17587-17594, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36464815

RESUMO

Immunohistochemistry (IHC) using fluorescent probes provides high resolution with multiplexing capability, but the imaging contrast is limited by the brightness of the fluorescent probe and the intrinsic autofluorescence background from tissues. Herein, we improved the contrast by high-density labeling of long-lifetime lanthanide complexes and time-gated imaging. As the large (∼280 nm) Stokes shift of lanthanide complexes effectively prevents the issue of concentration quenching, we succeeded in conjugating seven europium complexes to an eight-arm hydrophilic poly(ethylene glycol) (PEG) linker for signal amplification with improved water solubility to the level of up to 10 mg/mL. Moreover, we demonstrated that both human epidermal growth factor receptor 2 (HER2) in a formalin-fixed paraffin-embedded (FFPE) tissue section and cytokeratin 18 (CK18) in a frozen section can be resolved with the enhanced contrast by 2-fold and 3-fold, respectively. Furthermore, we show that the PEGylation of multiple lanthanide complexes is compatible with tyramide signal amplification (TSA). This work suggests new opportunities for sensitive imaging of low-abundance biomarkers in a tissue matrix.


Assuntos
Elementos da Série dos Lantanídeos , Humanos , Elementos da Série dos Lantanídeos/química , Imuno-Histoquímica , Európio/química , Corantes Fluorescentes , Polietilenoglicóis
4.
Macromol Rapid Commun ; 43(23): e2200542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35856411

RESUMO

2D conducting polymer thin film recently has garnered numerous interests as a means of combining the molecular aggregate ordering and promoting in-plane charge transport for large-scale/flexible organic electronics. However, it remains far from satisfactory for conducting polymer chains to achieve desirable surface topography and crystallinity due to lack of control over the precursor-involved interfacial assembly. Herein, wafer-size polyaniline (PANI) and tetra-aniline thin films are developed via a controlled interfacial synthesis with customized surface morphology and crystallinity through two typical aniline precursors selective polymerization. Two crucial competing assembly mechanisms, a) direct interfacial polymerization, b) solution polymerization and subsequent interfacial assembly, are investigated to play a vital role in determining elemental chain length and aggregate architecture. The optimal PANI thin film manifests ultraflat surface topography and unambiguous crystalline domains, which also enabling fascinating ammonia sensing capability with 31.4% ppm-1 sensitivity, fast response time (88 s) with astonishing selectivity, repeatability, and recovery capability. The thus-demonstrated strategy with wafer-scale processing potential and flexible microdevice offers a promising route for large-scale manufacturing thin-film organic electronics.


Assuntos
Compostos de Anilina , Polímeros , Polimerização , Compostos de Anilina/química
5.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613728

RESUMO

Due to its wide source and low cost, biomass-based hard carbon is considered a valuable anode for lithium-ion batteries (LIBs). Lignins, as the second most abundant source in nature, are being intensively studied as candidate anode materials for next generation LIBs. However, direct carbonization of pure lignin usually leads to low specific surface area and porosity. In this paper, we design a porous carbon material from natural lignin assisted by sacrificing a metal-organic framework (MOF) as the template. The MOF nanoparticles can disperse the lignin particles uniformly and form abundant mesopores in the composites to offer fast transfer channels for Li+. The as-prepared carbon anode shows a high specific capacity of 420 mAh g-1 with the capacity retention of 99% after 300 cycles at 0.2 A g-1. Additionally, it keeps the capacity retention of 85% after long cycle of 1000 cycles, indicating the good application value of the designed anode in LIBs. The work provides a renewable and low-cost candidate anode and a feasible design strategy of the anode materials for LIBs.


Assuntos
Lignina , Estruturas Metalorgânicas , Lítio , Biomassa , Carbono , Eletrodos , Íons
6.
Appl Opt ; 59(33): 10626-10637, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361998

RESUMO

Laser triangulation method is widely used in online precision measurement owing to its advantages of being fast, accurate, and dynamic, and having large-scale measurement capability. To improve the accuracy of laser triangulation, the scan depth, inclination angle, rotation angle, and deflection angle are defined. Then, a spatial pose error model and an experimental model for laser measurement error are established. Next, error analysis experiments are conducted, and the influence of spatial pose parameters on the error is analyzed. Further, error proofreading experiments on the surface characteristics of the measured workpiece, including the material, surface roughness, and color, are completed, and their influences on the error are analyzed. Based on the experimental data, an error correction model based on support vector regression is established. Measurement strategies are formulated considering multi-factor constraints such as optical path interference, mechanical interference, scan depth of field, measurement angle, and measurement path. The tooth profile of a cycloid gear is taken as the measurement object, then the measurement path planning is performed, and the error correction model is used to correct the measured data. The accuracy of the results agrees well with the result of a fully automatic computer numerical control (CNC)-controlled P 65 precision measuring center.

7.
Appl Microbiol Biotechnol ; 103(18): 7795-7804, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388733

RESUMO

The effects of sodium sulfite pretreatment on the delignification rate, cellulose content, enzymatic hydrolysis efficiency, and glucose yield of corncob residues (CCR) were investigated. The optimum pretreatment conditions were as follows: 12% sodium sulfite, with a pH value of 7, a temperature of 160 °C, and a holding time of 20 min. Under the optimal conditions, the cellulose content in the pretreated residue was 85.17%, and sodium lignosulfonate with a sulfonation degree of 0.677 mmol/g was obtained in the waste liquids. A delignification rate of 77.45% was also achieved after the pretreatment. Enzymatic hydrolysis of pretreated CCR was carried out with cellulase (5 FPU/g substrate) and ß-glucosidase (10 IU/g substrate) for 48 h. The untreated CCR were hydrolyzed using cellulase (20 FPU/g substrate) and ß-glucosidase (10 IU/g substrate) for 48 h. The comparison results showed that sodium sulfite pretreatment improved the enzymatic hydrolysis efficiency and glucose yield, which increased by 28.80% and 20.10%, respectively. These results indicated that despite the application of low cellulase dosage, high enzymatic hydrolysis efficiency substrate could be produced, and the sodium lignosulfonate which can be used for oilfields and concrete additives was obtained from the sodium sulfite-pretreated CCR.


Assuntos
Celulase/metabolismo , Lignina/metabolismo , Sulfitos/química , Zea mays/metabolismo , beta-Glucosidase/metabolismo , Biotecnologia , Glucose/metabolismo , Hidrólise , Temperatura
8.
Plant J ; 88(6): 936-946, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27460657

RESUMO

The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biopolímeros/biossíntese , Carotenoides/biossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética
9.
J Am Chem Soc ; 137(40): 12984-9, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26426145

RESUMO

In Nature, incompatible catalytic transformations are being carried out simultaneously through compartmentalization that allows for the combination of incompatible catalysts in tandem reactions. Herein, we take the compartmentalization concept to the synthetic realm and present an approach that allows two incompatible transition metal catalyzed transformations to proceed in one pot in tandem. The key is the site isolation of both catalysts through compartmentalization using a core-shell micellar support in an aqueous environment. The support is based on amphiphilic triblock copolymers of poly(2-oxazoline)s with orthogonal functional groups on the side chain that can be used to cross-link covalently the micelle and to conjugate two metal catalysts in different domains of the micelle. The micelle core and shell provide different microenvironments for the transformations: Co-catalyzed hydration of an alkyne proceeds in the hydrophobic core, while the Rh-catalyzed asymmetric transfer hydrogenation of the intermediate ketone into a chiral alcohol occurs in the hydrophilic shell.


Assuntos
Polímeros/química , Catálise , Micelas , Espectroscopia de Prótons por Ressonância Magnética
10.
Soft Matter ; 11(25): 5044-52, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26021287

RESUMO

The effect of flow on crystallization is commonly attributed to entropic reduction, which is caused by stretch and orientation of polymer chains but overlooks the role of flow on final-state free energy. With the aid of in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) and a homemade constrained uniaxial tensile testing machine, polycrystals possessing single-crystal-like orientation rather than uniaxial orientation are found during the constrained stretch of natural rubber, whereas the c-axis and a-axis align in the stretch direction (SD) and constrained direction (CD), respectively. Molecular dynamics simulation shows that aligning the a-axis of crystal nuclei in CD leads to the lowest free energy increase and favors crystal nucleation. This indicates that the nomenclature of strain-induced crystallization may not fully account for the nature of flow-induced crystallization (FIC) as strain mainly emphasizes the entropic reduction of initial melt, whereas stress rather than strain plays the dominant role in crystal deformation. The current work not only contributes to a comprehensive understanding of the mechanism of flow-induced crystallization but also demonstrates the potential application of constrained uniaxial tensile stretch for the creation of functional materials containing polycrystals that possess single-crystal-like orientation.


Assuntos
Borracha/química , Cristalização/instrumentação , Desenho de Equipamento , Estresse Mecânico , Síncrotrons , Resistência à Tração , Termodinâmica , Difração de Raios X/instrumentação
11.
Small ; 10(1): 88-93, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23861358

RESUMO

Photonic crystal encoded biomaterials microcarriers made from silica-hybrid photonic crystal beads are reported. The characteristic reflection peak originating from the physical periodic structure is used as the code of the microcarriers. They are stable during cell adhesion and culture on their surface. Based on this method, Different biomaterials are incorporated into different PCBs and used as encoded microcarriers for the multiplex evaluation of the interaction of cells and materials in a single culture experiment. These encoded microcarriers are ideal for multiplex bioevaluation of biomaterials or drug applications.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Materiais Biocompatíveis/efeitos adversos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Portadores de Fármacos/efeitos adversos , Humanos , Teste de Materiais
12.
Int J Biol Macromol ; 260(Pt 1): 129488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242390

RESUMO

Incorporating biopolymers into two-dimensional transition metal carbides and/or nitrides (2D MXene) has been demonstrated as an effective strategy to improve the mechanical behaviors of MXene-based composites. However, the insulate nature of biopolymers inevitably deteriorated the electrical conductivity and the sensitivity of assembled sensors. Herein, a novel cellulose nanofiber (CNF)/MXene/carbon black (CB) composite was demonstrated as the conductive layer in eco-friendly cellulose paper-based sensors by intercalating the CB into the MXene/CNF interlayer, followed by coating hydrophobic SiO2 for encapsulation. Befitting from the high-density crack-microstructures between CB and MXene, the fabricated superhydrophobic paper CB/CNF/MXene/SiO2 sensor delivered ultrahigh sensitivity of 729.52 kPa-1, low detect limit of 0.29 Pa, rapid response time of 80 ms and excellent stability over 10,000 cycles. Moreover, the fabricated sensor was capable of detecting the physiological parameter of human (e.g. huge/subtle movements) and spatial pressure distribution. Furthermore, the presence of SiO2 layer endowed the sensor with superhydrophobic performance (water contact angle ∼158.2 o) and stable electrical signals under high moisture conditions or even under water. Our work proposed a novel strategy to boost the sensitivity of MXene-based conductive layer in flexible electronic devices.


Assuntos
Celulose , Nitritos , Dióxido de Silício , Elementos de Transição , Humanos , Condutividade Elétrica , Fuligem , Água
13.
Int J Biol Macromol ; 266(Pt 1): 131024, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513907

RESUMO

Improving electron transfer rate of Co species and inhibiting aggregation of metal-organic frameworks (MOFs) particles are essential prerequisites for activating advanced oxidation process in wastewater treatment field. Here, we exploit Cu species with variable valence states to accelerate electron transfer of Co species and then to boost the unsatisfactory degradation efficiency for refractory pharmaceuticals via in-situ growth of copper and cobalt species on l-lysine functionalized carboxylated cellulose nanofibers. Utilizing the synergistic interplay of Co sites and deliberately exposed Cu0/Cu1+ atoms, the subtly designed catalyst exhibited a surprising degradation efficiency (~100 %) toward tetracycline hydrochloride within 10 min (corresponding to a catalytic capacity of 267.71 mg/g) without adjusting temperature and pH. Meanwhile, the catalyst displays good recyclability, well tolerance for coexisting ions and excellent antibacterial performance derived from the intrinsic antibacterial property of Cu-MOF. This research provided a novel strategy to construct MOFs-cellulose materials toward degrading various stubborn antibiotic pollutants.


Assuntos
Antibacterianos , Celulose , Cobalto , Cobre , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Celulose/química , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobalto/química , Catálise , Tetraciclina/química , Poluentes Químicos da Água/química
14.
Int J Biol Macromol ; 272(Pt 1): 132816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825273

RESUMO

Modulating the interactions between biopolymer matrix and nanofillers highly determined the mechanical performances of composite packaging materials. Herein, we innovatively proposed a sort of eco-friendly and mechanically robust carboxymethyl cellulose/graphene oxide/tannic acid/polyetherimide (CMC/GO/TA/PEI, CGTP) composite by employing PEI as cross-linker and TA as proton donor. The amidation reaction between -NH2 and -COOH chemically connected the CMC/GO, CMC/CMC and GO/GO and the physical interaction (e.g. hydrogen bonds and molecular entanglements) was beneficial to form dense structures. The chemical/physical bonds among polymers and nanofillers contributed to dissipate the external energy. The toughness was effectively reinforced from 1.68 MJ/m3 for CGTP0 to 4.63 MJ/m3 for CGTP1.0. Furthermore, the CGTP1.0 composite film also delivered improved gas (moisture and oxygen) barriers, UV protection and antimicrobial features. Originating from these merits, the shelf life of fresh fruits (e.g. strawberries, blueberries and cherry tomatoes) was prolonged at least 5 days under ambient conditions when the packaging box was covered by the fabricated CGTP1.0 film. Our findings not only provided a facial strategy to reinforce the interactions between biopolymer matrix and nanofillers, but also boosted the development of eco-friendly packaging materials with robust structures in the area of food packaging.


Assuntos
Carboximetilcelulose Sódica , Embalagem de Alimentos , Frutas , Grafite , Polímeros , Grafite/química , Embalagem de Alimentos/métodos , Carboximetilcelulose Sódica/química , Polímeros/química , Frutas/química , Conservação de Alimentos/métodos , Nanocompostos/química
15.
Int J Biol Macromol ; 258(Pt 2): 129154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171443

RESUMO

Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.


Assuntos
Celulose , Zea mays , Zea mays/metabolismo , Celulose/metabolismo , Ácido Láctico , Fermentação , Água , Hidrólise
16.
Int J Biol Macromol ; 257(Pt 2): 128745, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101673

RESUMO

The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.


Assuntos
Carbono , Estruturas Metalorgânicas , Porosidade , Íons , Celulose , Eletrodos , Lítio
17.
Int J Biol Macromol ; 265(Pt 2): 130981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513894

RESUMO

High-value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m3 for the CMC/PVA film to 210.9 % and 1426 kJ/m3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow-release urea, soil moisture retention, and heat preservation performances.


Assuntos
Ferro , Lignina , Agricultura/métodos , Solo , Álcool de Polivinil/química , Ureia , Sódio
18.
Chemosphere ; 341: 140027, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659513

RESUMO

Triploid Fujian oyster (Crassostrea angulata) is crucial to aquaculture and coastal ecosystems because of its accelerated growth and heightened resilience against environmental stressors. In light of the increasing prevalence of nanoplastic pollution in the ocean, understanding its potential impact on this organism, particularly its adaptive responses, is of paramount importance. Despite this, the effects of nanoplastic pollution on the physiology of C. angulata remain largely unexplored. In this study, we explored the responses of triploid Fujian oysters to nanoplastic stress during a 14-day exposure period, employing an integrative methodology that included physiological, metabolomic, and 16S rRNA sequencing analyses. Our results demonstrate that the oysters exhibit a strong adaptive response to nanoplastic exposure, characterized by alterations in enzyme activity, metabolic pathways, and microbial community composition, indicative of an adaptive recovery state as opposed to a disordered state. Oysters subjected to elevated nanoplastic levels exhibited adaptive responses primarily by boosting the activity of the antioxidant enzyme catalase and elevating the levels of antioxidants such as adenosine, 3-(4-hydroxyphenyl)pyruvate, D-sorbitol, d-mannose, and unsaturated fatty acids, as well as the functional amino acids l-proline and l-lysine. Nanoplastic treatment also resulted in increased activity of succinate dehydrogenase, a key component of energy metabolism, and increased contents of intermediate metabolites or products of energy metabolism, such as adenosine monophosphate, adenosine, guanosine, creatine, and thiamine. Nanoplastic treatment led to an increase in the abundance of certain advantageous genera of gut bacteria, specifically Phaeobacter and Nautella. The observed adaptive response of triploid Fujian oysters to nanoplastic stress provides valuable insights into the mechanisms underpinning resilience in marine bivalves.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Microplásticos , Triploidia , Ecossistema , RNA Ribossômico 16S/genética , Adenosina , Antioxidantes
19.
J Stomatol Oral Maxillofac Surg ; 125(3): 101733, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38072234

RESUMO

OBJECTIVE: This study aims to investigate the correlation between open-mouth breathing and temporomandibular joint morphology by examining CT data in patients. METHODS: From January to December 2022, 31 patients with open-mouth breathing and 20 with normal breathing were chosen from those attending the Stomatological Hospital of Chongqing Medical University. We compared condylar measurements among normal breathers (NB), pre-operative open-mouth breathers (Pre-OB), and post-operative open-mouth breathers (Post-OB) to identify statistically significant differences. RESULTS: Upon comparing the measurement parameters of the NB with the Pre-OB, we found significant statistical differences in the bilateral condylar height, depth of the articular fossa, anterior joint space, and the anterior inclined plane length of the condyle (p < 0.05).Further examination of the Pre-OB, when considering duration of open-mouth breathing, revealed pronounced differences in the condylar mediolateral diameter, fossa depth, anterior joint space, condylar height, and the condyle's horizontal angle (p < 0.05).Regarding the A/N ratio, it showed no significant correlation with the preoperative oral breathing group. Lastly, compared with Pre-OB, Post-OB highlighted a distinct statistical increase in the anterior slope length of the condyle (p < 0.05). CONCLUSION: A discernible correlation between open-mouth breathing and condylar morphology exists. Continuous open-mouth breathing contributes to adaptive changes in the condylar morphology. Although limited post-operative data suggests that halting open-mouth breathing doesn't immediately result in condylar modifications, a relationship between the two phenomena remains evident.

20.
Int J Biol Macromol ; 253(Pt 3): 126775, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37699460

RESUMO

With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.


Assuntos
Celulose , Zea mays , Celulose/metabolismo , Zea mays/metabolismo , Oligossacarídeos , Fermentação , Ácido Láctico , Glucose , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA