Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(31): 11510-11519, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489803

RESUMO

Accurately tracking carbon flows is the first step toward reducing the climate impacts of the iron and steel industry (ISI), which is still lacking in China. In this study, we track carbon flows from coal/mineral mines to end steel users by coupling the cross-process material and energy flow model, point-based emission inventory, and interprovincial trade matrices. In 2020, ISI emitted 2288 Tg of CO2 equivalent (CO2eq, including CH4 and CO2), 96% of which came from energy use and 4% from raw material decomposition. Often overlooked off-gas use and CH4 leakage in coal mines account for 25% of life-cycle emissions. Due to limited scrap resources and a high proportion of pig iron feed, the life-cycle emission intensity of the electric arc furnace (EAF) (1.15 t CO2eq/t steel) is slightly lower than the basic oxygen furnace (BOF) (1.58 t CO2eq/t steel) in China. In addition, over 49% of producer-based emissions are driven by interprovincial coal/coke/steel trade. In particular, nearly all user-based emissions in Zhejiang and Beijing are transferred to steelmaking bases. Therefore, we highlight the need for life-cycle and spatial shifts in user-side carbon management.


Assuntos
Poluentes Atmosféricos , Ferro , Animais , Suínos , Poluentes Atmosféricos/análise , Carbono , Aço , Dióxido de Carbono/análise , Carvão Mineral , China
2.
Metabolism ; 135: 155274, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917895

RESUMO

BACKGROUND: Activation of NLRP3 inflammasome accelerates the formation of atherosclerotic plaques. Here, we evaluated the effects of inflammation on the expression of the NLRP3 inflammasome in endothelial cells (ECs). METHODS: The effect of TNF-α on transcytosis of LDL was measured. VCAM-1 binding peptide targeting cationic liposomes (PCLs) were prepared as siRNA vectors. Methylated NLRP3 siRNA was encapsulated into the PCLs to knock down NLRP3 in vitro and in vivo. In rats with partial carotid ligation, TNF-α-induced LDL retention in the carotid artery endothelium was observed. In ApoE-/- mice, NLRP3 siRNA-PCLs were injected intravenously to observe their effect on the formation of atherosclerosis. RESULTS: Our results showed that TNF-α upregulated NLRP3 in ECs, promoting the assembly of the NLRP3 inflammasome and processing of pro-IL-1ß into IL-1ß. Moreover, TNF-α accelerated LDL transcytosis in ECs. Knockdown of NLRP3 prevented TNF-α-induced NLPR3 inflammasome/IL-1ß signaling and LDL transcytosis. Using optimized cationic liposomes to encapsulate methylated NLRP3 siRNA, resulting in targeting of VCAM-1-expressing ECs, to knockdown NLRP3, TNF-α-induced NLRP3 inflammasome activation and LDL transcytosis were prevented. Using the partial carotid ligation as an atherosclerosis rat model, we found that local administration of NLRP3 siRNA-PCLs efficiently knocked down NLPR3 expression in the carotid endothelium and dramatically attenuated the deposition of atherogenic LDL in carotid ECs in TNF-α-challenged rats. Furthermore, NLRP3 siRNA-PCLs were injected intravenously in ApoE-/- mice, resulting in reduced plaque formation. CONCLUSION: These findings established a novel strategy for targeting the NLRP3 inflammasome using NLRP3 siRNA-PCLs to interrupt LDL transcytosis, representing a potential novel therapy for atherosclerosis.


Assuntos
Aterosclerose , Inflamassomos , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/terapia , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Lipoproteínas LDL/metabolismo , Lipossomos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transcitose , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA