Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Formos Med Assoc ; 117(4): 276-282, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29449065

RESUMO

BACKGROUND/PURPOSE: Fluoride and epigallocatechin gallate (EGCG) have been proven to prevent dental caries. The purpose of this study was to evaluate the effects of fluoride and EGCG on soft-drink-induced dental erosion in vitro. METHODS: Forty enamel and dentin specimens were prepared from extracted human teeth. The specimens were divided into 4 groups and treated separately with distilled water (as control), 0.5 M sodium fluoride (NF), 400 µM EGCG (EG), and a solution containing 0.5 M NaF and 400 µM EGCG (FG). Cyclic erosive treatment was performed according to the experimental procedures. The specimens were analyzed using laser scanning confocal microscopy, scanning electron microscopy, and a microhardness tester. The data were analyzed using ANOVA and Bonferroni's post hoc test. The significance level was set at 5%. RESULTS: The amount of substance loss was lower in the NF and EG groups than in the control group (p < 0.05). The erosion-caused substance loss was more pronounced in the dentin than in the enamel specimens. Surface microhardness loss was lower in the NF and EG groups than in the control group (p < 0.05). The diameter of the dentinal tubule was wider in the control group than in the NF and EG groups (p < 0.05). No combined effects were observed in the FG group. CONCLUSION: Both fluoride and EGCG are effective in preventing soft-drink-induced erosion compared with the control group. Fluoride and EGCG may interfere with each other. The mechanisms of the anti-erosive effect need to be explored in the future.


Assuntos
Bebidas Gaseificadas/efeitos adversos , Catequina/análogos & derivados , Fluoreto de Sódio/farmacologia , Erosão Dentária/prevenção & controle , Catequina/farmacologia , Esmalte Dentário , Dentina , Humanos , Microscopia Eletrônica de Varredura , Raiz Dentária
2.
Acta Biomater ; 167: 16-37, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331614

RESUMO

With the advancement of additive manufacturing (AM), customized vascular stents can now be fabricated to fit the curvatures and sizes of a narrowed or blocked blood vessel, thereby reducing the possibility of thrombosis and restenosis. More importantly, AM enables the design and fabrication of complex and functional stent unit cells that would otherwise be impossible to realize with conventional manufacturing techniques. Additionally, AM makes fast design iterations possible while also shortening the development time of vascular stents. This has led to the emergence of a new treatment paradigm in which custom and on-demand-fabricated stents will be used for just-in-time treatments. This review is focused on the recent advances in AM vascular stents aimed at meeting the mechanical and biological requirements. First, the biomaterials suitable for AM vascular stents are listed and briefly described. Second, we review the AM technologies that have been so far used to fabricate vascular stents as well as the performances they have achieved. Subsequently, the design criteria for the clinical application of AM vascular stents are discussed considering the currently encountered limitations in materials and AM techniques. Finally, the remaining challenges are highlighted and some future research directions are proposed to realize clinically-viable AM vascular stents. STATEMENT OF SIGNIFICANCE: Vascular stents have been widely used for the treatment of vascular disease. The recent progress in additive manufacturing (AM) has provided unprecedented opportunities for revolutionizing traditional vascular stents. In this manuscript, we review the applications of AM to the design and fabrication of vascular stents. This is an interdisciplinary subject area that has not been previously covered in the published review articles. Our objective is to not only present the state-of-the-art of AM biomaterials and technologies but to also critically assess the limitations and challenges that need to be overcome to speed up the clinical adoption of AM vascular stents with both anatomical superiority and mechanical and biological functionalities that exceed those of the currently available mass-produced devices.


Assuntos
Materiais Biocompatíveis , Doenças Vasculares , Humanos , Stents , Tecnologia
3.
J Pharm Biomed Anal ; 233: 115496, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285658

RESUMO

A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.


Assuntos
Produtos Biológicos , Polissorbatos , Excipientes , Micelas , Cromatografia Líquida de Alta Pressão/métodos , Soluções Tampão
4.
J Dent Sci ; 18(2): 822-832, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021246

RESUMO

Background/purpose: A challenge that arises with periodontal regeneration surgery has been associated with the future development of periodontal regeneration membrane to prevent gingiva and fibroblasts invade the wound and allow alveolar bone successfully regenerated. Materials and methods: Chitosan (CS) has the advantages of non-toxicity, biodegradation, biocompatibility, and has been widely used in wound dressings. A flexible film was made using polyvinyl alcohol (PVA) blending CS based thermosensitive hydrogel. Results: The proposed 2% PVA/CS hydrogel has the highest swelling ratio about 720% after 60 min incubation and keeps its area after 10 min incubation for surgery suture. The elastic modulus of 0%, 1%, 2%, and 4% PVA/CS hydrogel were 7.75 ± 1.96, 0.91 ± 0.16, 0.75 ± 0.21, and 0.37 ± 0.06 MPa, respectively. The maximum strain of 2% PVA/CS hydrogel was 101.00 ± 28.03 (%). After 8 weeks biodegradation, the remain weight of 2% PVA/CS hydrogel was 71.36 ± 0.79 (%). Conclusion: In vitro cytotoxicity tests were performed and demonstrated PVA/CS hydrogel significantly improving cell proliferation. This study realized a promising flexible film for periodontal regeneration membrane that can prevent the rapid growth of fibroblasts to invade the wound and be used for periodontal regeneration surgery.

5.
Nanoscale ; 7(42): 17929-37, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26462601

RESUMO

The design and fabrication of multimodal imaging nanoparticles is of great importance in medical diagnosis. Here we report the fabrication of core-shell structured Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+)@TaOx@SiO2 nanoparticles for persistent luminescence and X-ray computed tomography (CT) imaging. Persistent luminescent nanoparticles Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+) were used as the core to provide near-infrared luminescence, and a TaOx layer was grown on the core to serve as the contrast agent for CT. The tenuous outermost SiO2 shell was fabricated on the TaOx layer to gain high biocompatibility and to facilitate post-modification with tumor-targeting peptides. The fabricated core-shell structured nanoparticle shows intense near-infrared luminescence and the CT contrast effect. No obvious mutual interference was found in these two modalities, which ensures that each imaging modality merits could be brought in a full play. Furthermore, covalent bonding of cyclic-Asn-Gly-Arg peptides makes the core-shell structured nanoparticles promising for in vivo targeted imaging of tumor-bearing mice.


Assuntos
Nanopartículas Metálicas/química , Óxidos/química , Tantálio/química , Tomografia Computadorizada por Raios X , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/metabolismo , Células Hep G2 , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Oligopeptídeos/química , Polietilenoglicóis/química , Dióxido de Silício/química , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA