Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 19(1): 258, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454520

RESUMO

BACKGROUND: The rational chemical design of nanoparticles can be readily controlled and optimized by quantitatively studying protein adsorption at variously charged polymer carriers, determining their fate in biological fluids. We manufactured brain-derived neurotrophic factor (BDNF) -based electrostatic nanocomplexes with a different type of dendrimer core (anionic or cationic), encapsulated or not in polyethylene glycol (PEG), and studied their physicochemical properties and behavior in a biological setting. We investigated whether the electrokinetic charge of dendrimer core influences BDNF loading and desorption from the nanoparticle and serves as a determinant of nanoparticles' behavior in in vitro setting, influencing mitochondrial dysfunction, lipid peroxidation, and general nanoparticles' cellular toxicity. RESULTS: We found that the electrokinetic charge of the dendrimer core influences nanoparticles in terms of BDNF release profile from their surfaces and their effect on cell viability, mitochondrial membrane potential, cell phenotype, and induction of oxidative stress. The electrostatic interaction of positively charged core of nanoparticles with cell membranes increases their cytotoxicity, as well as serious phenotype alterations compared to negatively charged nanoparticles core in neuron-like differentiated human neuroblastoma cells. Moreover, PEG adsorption at nanoparticles with negatively charged core presents a distinct decrease in metabolic cell activity. On the contrary, charge neutralization due to PEG adsorption on the surface of nanoparticles with positively charged core does not reduce their cytotoxicity, makes them less biocompatible with differentiated cells, and presumably shows non-specific toxicity. CONCLUSIONS: The surface charge transformation after adsorption of protein or polyelectrolyte during nanocarriers formulation has an important role not only in designing nanomaterials with potent neuroprotective and neuroregenerative properties but also in applying them in a cellular environment.


Assuntos
Nanopartículas/química , Nanopartículas/toxicidade , Estresse Oxidativo , Proteínas/química , Adsorção , Humanos , Íons , Oxidopamina , Polietilenoglicóis/química , Polímeros , Eletricidade Estática , Propriedades de Superfície
2.
J Nanobiotechnology ; 18(1): 120, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867843

RESUMO

Brain-derived neurotrophic factor (BDNF) is essential for the development and function of human neurons, therefore it is a promising target for neurodegenerative disorders treatment. Here, we studied BDNF-based electrostatic complex with dendrimer nanoparticles encapsulated in polyethylene glycol (PEG) in neurotoxin-treated, differentiated neuroblastoma SH-SY5Y cells, a model of neurodegenerative mechanisms. PEG layer was adsorbed at dendrimer-protein core nanoparticles to decrease their cellular uptake and to reduce BDNF-other proteins interactions for a prolonged time. Cytotoxicity and confocal microscopy analysis revealed PEG-ylated BDNF-dendrimer nanoparticles can be used for continuous neurotrophic factor delivery to the neurotoxin-treated cells over 24 h without toxic effect. We offer a reliable electrostatic route for efficient encapsulation and controlled transport of fragile therapeutic proteins without any covalent cross-linker; this could be considered as a safe drug delivery system. Understanding the polyvalent BDNF interactions with dendrimer core nanoparticles offers new possibilities for design of well-ordered protein drug delivery systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dendrímeros/química , Portadores de Fármacos , Nanopartículas/química , Neuroblastoma/metabolismo , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Neurotoxinas/efeitos adversos , Polietilenoglicóis/química , Eletricidade Estática
3.
Int J Biol Macromol ; 265(Pt 2): 130726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490392

RESUMO

The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of -8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 µM, and the Kd of NT3 was 732 µM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Polietilenoglicóis , Camundongos , Humanos , Animais , Distribuição Tecidual , Potenciais da Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA