Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pharm ; 20(11): 5668-5681, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37856874

RESUMO

Despite significant progress in vaccine development, especially in the fight against viral infections, many unexplored areas remain including innovative adjuvants, diversification of vaccine formulations, and research into the coordination of humoral and cellular immune mechanisms induced by vaccines. Effective coordination of humoral and cellular immunity is crucial in vaccine design. In this study, we used the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or ovalbumin (OVA) as antigen models and CpG DNA (an activator of toll-like receptor 9, TLR9) as an adjuvant to prepare a multitargeted liposome (LIPO) vaccine. Once equipped with the ability to target lymph nodes (LN) and the endoplasmic reticulum (ER), the LIPO vaccine significantly enhances the cross-presentation ability of antigen-presenting cells (APCs) for exogenous antigens through the ER-associated protein degradation (ERSD) mechanism. Additionally, the vaccine could fine-tune the efficiency of ER-targeted antigen delivery, actively regulating the presentation of exogenous antigen proteins via the major histocompatibility complex (MHC-I) or MHC-II pathways. Immune data from in vivo mouse experiments indicated that the LIPO vaccine effectively stimulated both humoral and cellular immune responses. Furthermore, it triggers immune protection by establishing a robust and persistent germinal center. Moreover, the multifunctionality of this LIPO vaccine extends to the fields of cancer, viruses, and bacteria, providing insights for skilled vaccine design and improvement.


Assuntos
Imunidade Humoral , Vacinas , Animais , Camundongos , Lipossomos/farmacologia , Antígenos , Imunidade Celular , Adjuvantes Imunológicos
2.
J Nanobiotechnology ; 19(1): 427, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922537

RESUMO

BACKGROUND: Gene therapy shows great promise for a broad array of diseases. However, we found that hypoxic tumor microenvironment (TME) exerted significant inhibitory effects on transfection efficiency of a variety of gene vectors (such as Lipo 2000 and PEI) in an oxygen-dependent manner. Solid tumors inevitably resulted in acute hypoxic areas due to the rapid proliferation of tumor cells and the aberrant structure of blood vessels. Thus, the hypoxic TME severely limited the efficiency and application of gene therapy. METHODS: In our previous study, we constructed endoplasmic reticulum-targeted cationic liposomes, PAR-Lipo, which could effectively deliver genes and ensure high transfection efficiency under normoxia. Unsatisfactorily, the transfection efficiency of PAR-Lipo was rather poor under hypoxia. We believed that reoxygenation was the most direct and effective means to rescue the low transfection under hypoxia. Hence, we fabricated liposomes modified with perfluorooctyl bromide (PFOB@Lipo) to load oxygen and deliver it to tumor sites, which effectively alleviated the hypoxic nature of tumor. Then PAR-Lipo were applied to mediate high-efficiency delivery of tumor suppressor gene pTP53 to inhibit tumor progression. RESULTS: The results showed that such staged strategy augmented the expression of P53 protein in tumors and extremely suppressed tumor growth. CONCLUSION: This work was the first attempt to utilize an oxygen nanocarrier to assist the therapeutic effect of gene therapy under hypoxia, providing a new reference for gene therapy in malignant tumors. GRAPHICAL ABSTARCT.


Assuntos
Terapia Genética/métodos , Lipossomos/química , Nanoestruturas/química , Oxigênio/química , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Fluorocarbonos/química , Proteínas de Fluorescência Verde/genética , Humanos , Hidrocarbonetos Bromados/química , Lipossomos/farmacologia , Camundongos , Camundongos Nus , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
3.
Mol Pharm ; 16(11): 4530-4541, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31617723

RESUMO

Tumor metastasis is the most dangerous stage in tumorigenesis and its evolution, which causes about 80% clinical death. However, common therapies including chemotherapy may increase the risk of tumor metastasis while killing cancer cells. Tumor metastasis is closely related to many factors in the tumor microenvironment, especially hypoxia. As one of the characteristics of a malignant tumor microenvironment, hypoxia plays an important role in the growth, metabolism, and metastasis of tumors. Upregulation of the hypoxia-inducible factor (HIF) would stimulate the metastasis and migration of cancer cells. In this study, we developed an artificial oxygen carrier system, a hemoglobin-loaded liposome (Hb@lipo), which was capable of effectively delivering oxygen to tumor. The way of providing oxygen not only alleviated tumor hypoxia but also downregulated the expression of HIF, which is conducive to reducing tumor malignancy. Alleviating the tumor hypoxic microenvironment alone is not enough to inhibit tumor metastasis; thus, we prepared the liposome containing a chemotherapeutic agent cabazitaxel (CBZ@lipo). Our data indicated that the combination therapy of Hb@lipo and CBZ@lipo can efficiently kill cancer cells and inhibit tumor growth. At the same time, it can effectively entrap cancer cells in tumor sites by relieving the hypoxic microenvironment of tumors and reduce the metastasis of cancer cells during and after the chemotherapy. Our research may provide a clinical cancer chemotherapy reference that reduces the risk of cancer cell metastasis while inhibiting tumor growth.


Assuntos
Antineoplásicos/farmacologia , Metástase Neoplásica/tratamento farmacológico , Oxigênio/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Animais , Biomimética/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HT29 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipossomos/química , Células MCF-7 , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral/efeitos dos fármacos
4.
J Liposome Res ; 27(1): 64-73, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27031365

RESUMO

OBJECTIVES: In this study, an improved lyophilized PEGylated liposomal formulation of docetaxel (DOC) has been developed. METHODS: PEGylated docetaxel liposome (PL-DOC) was prepared by thin-film evaporation method and lyophilization. The effect of various components of the lipids and their compatibility with DOC on the entrapment efficiency (EE) of liposome was investigated. The lyophilized PL-DOC was characterized by morphology, particle size, zeta potential, EE, release in vitro and stability. Pharmacokinetics and biodistribution in vivo of lyophilized PL-DOC were also investigated. RESULTS: The optimal liposome formulation was egg phosphatidylcholine (EPC):cholesterol (CH):DSPE-PEG2000:DOC = 56:40:4:4 (molar ratio). Sucrose and mannitol were chosen as cryoprotectant in the lyophilization (cryoprotectant-to-lipid (C/L) mass ratio = 8:1). The size of lyophilized PL-DOC was 152.3 ± 1.0 nm with negative charge and the EE was 89.75 ± 1.79%. Compared with nonlyophilized PL-DOC, the lyophilized PL-DOC was more stable at 4 °C for six months. The lyophilized PL-DOC also showed the good stability after reconstituted by 5% glucose injection. In vitro release study of PL-DOC showed that PL-DOC had a sustained release effect. After i.v. administration at the dose of 10 mg/kg in rats, a significant increase in the AUC0-∞, MRT0-∞ and t1/2 was observed in PL-DOC group compared with conventional docetaxel liposome (CL-DOC) and DOC injection (DOC-I) group. Biodistribution studies in mice showed that PL-DOC significantly decreased the uptake by the organs of mononuclear phagocytic system (MPS), such as liver and spleen, while prolonging the retention time of DOC in the plasma. CONCLUSION: Our PEGylated liposome formulation reported in this study could potentially produce viable clinical strategies for improved delivery of DOC for the treatment of human cancer.


Assuntos
Taxoides/farmacocinética , Animais , Docetaxel , Lipossomos/análise , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Taxoides/análise , Distribuição Tecidual
5.
Small ; 12(48): 6753-6766, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677919

RESUMO

Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI25K /pTP53, and PCS10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes.


Assuntos
Técnicas de Transferência de Genes , Nanotubos de Carbono/química , DNA/genética , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Polietilenoimina/química , Transfecção
6.
Biochem Biophys Res Commun ; 457(4): 507-13, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25580010

RESUMO

Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering.


Assuntos
Antioxidantes/uso terapêutico , Celulose/química , Regeneração Nervosa/efeitos dos fármacos , Cofator PQQ/uso terapêutico , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Proteínas de Soja/química , Alicerces Teciduais/química , Animais , Antioxidantes/administração & dosagem , Regeneração Tecidual Guiada , Masculino , Cofator PQQ/administração & dosagem , Ratos , Ratos Sprague-Dawley , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Engenharia Tecidual
7.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38056013

RESUMO

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Hidrogéis/química , Estudos Transversais , Polpa Dentária , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Medula Espinal
8.
Int Dent J ; 74(4): 836-846, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38369441

RESUMO

OBJECTIVE: Pulp regeneration with bioactive dentin-pulp complex has been a research hotspot in recent years. Stem cell therapy provided an interest strategy to regenerate the dental-pulp complex. Hence, this study aimed to evaluate the effects of photosensitive gelatin methacrylate (GelMA) hydrogel encapsulating dental pulp stem cells (DPSCs) and silver nanoparticles (AgNPs) for dental pulp regeneration in vitro. METHODS: First, the AgNPs@GelMA hydrogels were prepared by lithium phenyl-2,4,6-trimethyl-benzoyl phosphinate (LAP) initiation via blue-light emitting diode light. The physical and chemical properties of AgNPs@GelMA hydrogels were comprehensively analysed via scanning electron microscopy (SEM), and mechanical characterisation, such as swelling ability, degradation properties, and AgNP release profile. Then, AgNPs@GelMA hydrogels encapsulated DPSCs were used to establish an AgNPs@GelMA biomimetic complex, further analysing its biocompatibility, antibacterial properties, and angiogenic capacity in vitro. RESULTS: The results indicated that GelMA hydrogels demontrated optimal characteristics with a monomer:LAP ratio of 16:1. The physico-chemical properties of AgNPs@GelMA hydrogels did not change significantly after loading with AgNPs. There was no significant difference in AgNP release rate amongst different concentrations of AgNPs@GelMA hydrogels. Fifty to 200 µg/mL AgNPs@GelMA hydrogels could disperse E faecalis biofilm and reduce its metabolic activity . Furthermore, cell proliferation was arrested in 100 and 200 µg/mL AgNPs@GelMA hydrogels. The inhibition of 50 µg/mL AgNPs@GelMA hydrogels on E faecalis biofilm was above 50%, and the cell viability of the hydrogels was higher than 90%. The angiogenesis assay indicated that AgNPs@GelMA hydrogels encapsulating DPSCs could induce the formation of capillary-like structures and express angiogenic markers CD31, vascular endothelial growth factor , and von willebrand factor (vWF) in vitro. CONCLUSIONS: Results of this study indicate that 50 µg/mL AgNPs@GelMA hydrogels encapsulating DPSCs had significant antibacterial properties and angiogenic capacity, which could provide a significant experimental basis for the regeneration of the dentin-pulp complex.


Assuntos
Polpa Dentária , Gelatina , Hidrogéis , Nanopartículas Metálicas , Regeneração , Prata , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Humanos , Hidrogéis/química , Nanopartículas Metálicas/uso terapêutico , Células-Tronco/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Gelatina/química , Metacrilatos/química , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura , Proliferação de Células/efeitos dos fármacos
9.
Nat Nanotechnol ; 18(6): 647-656, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081080

RESUMO

Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow-blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow-blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.


Assuntos
Nanopartículas , Osteoporose , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neutrófilos , Ácido Láctico/uso terapêutico , Ácido Poliglicólico/uso terapêutico , Medula Óssea , Osteoporose/tratamento farmacológico
10.
Mil Med Res ; 10(1): 35, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525300

RESUMO

BACKGROUND: Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration. METHODS: In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO3, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physical and chemical properties of the Cs/Gel/PHA scaffold with 0-10 wt% PBT were analyzed. Cell and animal experiments were performed to characterize the immunomodulatory, angiogenic, and osteogenic capabilities of the piezoelectric hydrogel scaffold in vitro and in vivo. RESULTS: The incorporation of BaTiO3 into the scaffold improved its mechanical properties and increased self-generated electricity. Due to their endogenous piezoelectric stimulation and bioactive constituents, the as-prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory, angiogenic, and osteogenic capabilities; they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration, tube formation, and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) and facilitated the migration, osteo-differentiation, and extracellular matrix (ECM) mineralization of MC3T3-E1 cells. The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model. The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis, and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization. CONCLUSION: The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation, angiogenesis, and osteogenesis functions may be used as a substitute in periosteum injuries, thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat effectiveness in grassroots troops.


Assuntos
Quitosana , Medicina Militar , Ratos , Humanos , Animais , Osteogênese , Engenharia Tecidual , Hidrogéis/química , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Células Endoteliais da Veia Umbilical Humana , Hidroxiapatitas/farmacologia
11.
Cell Prolif ; 55(10): e13293, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822247

RESUMO

OBJECTIVES: As a result of the current limitation of therapeutic strategies, the repair and regeneration of oviduct injuries required an alternative treatment. We present a novel approach to treat oviduct injuries through a dental pulp stem cells (DPSCs)-based therapy. MATERIALS AND METHODS: In vitro and in vivo models have been established. Immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to investigate the features and angiogenic properties of DPSCs, as well as their impact on macrophages, in vitro. For the in vivo experiment with female SD rat model, immunohistochemical staining and ELISA analysis were used to assess the effects of DPSCs on the repair and regeneration of damaged oviducts. RESULTS: The present data showed that intraperitoneal injection of DPSCs reduced the expression of IL-6 and TNF-α to inhibit the immunoreaction in injured sites, as well as increased the expression of VEGF to promote the in situ formation of vessel-like structures, thus the repair and recovery process could be initiated. CONCLUSIONS: We concluded that DPSCs-based therapy could be a novel potential technique for restoring the structure and function of damaged oviduct by enhancing immuno-regulated effect and promoting angiogenic property.


Assuntos
Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Feminino , Humanos , Imunomodulação , Interleucina-6/metabolismo , Oviductos/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Front Bioeng Biotechnol ; 10: 1062646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686246

RESUMO

Objectives: Fallopian tube (FT) injury is an important factor that can lead to tubal infertility. Stem-cell-based therapy shows great potential for the treatment of injured fallopian tube. However, little research has shown that mesenchymal stem cells (MSCs) can be used to treat fallopian tube damage by in situ injection. In this study, we in situ transplanted PF127 hydrogel encapsulating dental pulp stem cells (DPSCs) into the injured sites to promote the repair and regeneration of fallopian tube injury. Materials and methods: The properties of dental pulp stem cells were evaluated by flow cytometry, immunofluorescence analysis, and multi-differentiation detection. The immunomodulatory and angiogenic characteristics of dental pulp stem cells were analyzed on the basis of the detection of inflammatory factor expression and the formation of capillary-like structures, respectively. The biocompatibility of PF127 hydrogel was evaluated by using Live/Dead and CCK-8 assays. The effects of PF127 hydrogel containing dental pulp stem cells on the repair and regeneration of fallopian tube injury were evaluated by histological analysis [e.g., hematoxylin and eosin (H&E) and Masson's trichrome staining, TUNEL staining, immunofluorescence staining, and immunohistochemistry], Enzyme-linked immunosorbent assay (ELISA), and RT-PCR detections. Results: Dental pulp stem cells had MSC-like characteristics and great immunomodulatory and angiogenic properties. PF127 hydrogel had a thermosensitive feature and great cytocompatibility with dental pulp stem cells. In addition, our results indicated that PF127 hydrogel containing dental pulp stem cells could promote the repair and regeneration of fallopian tube damage by inhibiting cell apoptosis, stimulating the secretion of angiogenic factors, promoting cell proliferation, modulating the secretion of inflammatory factors, and restoring the secretion of epithelial cells. Conclusion: In this study, our results reported that in situ injection of PF127 hydrogel encapsulating dental pulp stem cells into the injured sites could provide an attractive strategy for the future treatment of fallopian tube injury in clinical settings.

13.
J Control Release ; 341: 769-781, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952044

RESUMO

As a research hotspot, immune checkpoint inhibitors (ICIs) is often combined with other therapeutics in order to exert better clinical efficacy. To date, extensive laboratory and clinical investigations into the combination of ICIs and chemotherapy have been carried out, demonstrating augmented effectiveness and broad application prospects in anti-tumor therapy. However, the administration of these two treatment modalities is usually randomized or fixed to a given chronological order. Nevertheless, the pharmacological effect of drug is closely related to its exposure behavior in vivo, which may consequently affect the synergistic outcomes of a combined therapy. In this study, we prepared a lipid nanoparticle encapsulating docetaxel (DTX-VNS), and associated it with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) for the treatment of malignant tumors. To identify the optimum timing and sequencing for chemotherapy and immunotherapy, we designed three administration regimes, including the simultaneous delivery of DTX-VNS and αPD-1(DTX-VNS@αPD-1), DTX-VNS delivery before (DTX-VNS plus αPD-1) or post (αPD-1 plus DTX-VNS) PD-1 blockade with an interval of two days. Analysis from mass spectrometry, multi-factor detection and other techniques indicated that DTX-VNS plus αPD-1 initiated a powerful anti-tumor response in multiple tumor models, contributing to a remarkably reshaped tumor microenvironment landscape, which may attribute to the maximum therapeutic additive effects arise from a concomitant exposure of DTX-VNS and αPD-1 at the tumor site. By profiling the exposure kinetics of nanoparticles and αPD-1 in vivo, we defined the administration schedule with utmost therapeutic benefits, which may provide a valuable clinical reference for the rational administration of immunochemotherapy.


Assuntos
Imunoterapia , Nanopartículas , Linhagem Celular Tumoral , Lipossomos , Nanopartículas/química
15.
ACS Nano ; 16(6): 9240-9253, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713245

RESUMO

A therapeutic tumor vaccine is a promising approach to cancer treatment. One of its strategies is to treat patient-derived tumor cells in vitro and then administer them in vivo to induce an adaptive immune response and achieve cancer treatment. Here, we want to explore the possibility of converting cancer tissue into a therapeutic tumor vaccine through induced immunogenic cell death (ICD) in situ. We loaded indocyanine green (ICG) into liposomes (ICG-Lipo) and modified it with the pardaxin peptide to realize an endoplasmic reticulum (ER)-targeting function (Par-ICG-Lipo). A microfluidic technique was developed for loading ICG, a water-soluble molecule, into liposomes with a high encapsulation efficiency (greater than 90%). Under near-infrared (NIR) irradiation, ER-targeting photodynamic therapy (PDT) induced by Par-ICG-Lipo could promote the release of danger-signaling molecules (DAMPs) and tumor antigens (TAAs) in vivo, which significantly enhanced the immunogenicity in vivo and thus stimulates a strong antitumor immune response. This process would be further amplified by adopting dendritic cells. In general, our strategy transformed in situ tumor cells into therapeutic vaccines by ER-targeting PDT, which could provide a clinically applicable and effective approach for cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Vacinas Anticâncer/uso terapêutico , Lipossomos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Neoplasias/terapia , Retículo Endoplasmático , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
16.
Cell Prolif ; 54(2): e12969, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33332682

RESUMO

OBJECTIVES: Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS: DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS: It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS: This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.


Assuntos
Proliferação de Células/efeitos dos fármacos , Polpa Dentária/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Adipogenia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antígeno CD146/metabolismo , Diferenciação Celular/efeitos dos fármacos , Criopreservação , Meios de Cultura/química , Polpa Dentária/citologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Homeobox Nanog/metabolismo , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
17.
Front Cell Dev Biol ; 9: 654654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869214

RESUMO

Titanium modifications with different silver loading methods demonstrate excellent antibacterial properties. Yet pure silver nanoparticles with limited bioactive properties may delay regeneration of bone surrounding the dental implant. Therefore, loading silver with bioactive drugs on titanium surfaces seems to be a very promising strategy. Herein, we designed a silver (Ag) step-by-step cross-linking with the basic fibroblast growth factor (bFGF) by polydopamine (PDA) and heparin on titanium nanotube (TNT) as its cargo (TNT/PDA/Ag/bFGF) to improve the implant surface. Our results showed that TNT/PDA/Ag/bFGF significantly enhanced the osteogenic differentiation of dental pulp stem cells (DPSCs). It also showed an excellent effect in bacterial inhibition and a reduction of pro-inflammatory factors through inhibition of M1 macrophage activity. These results showed that bFGF cross-linked silver coating on TNTs presented good osteogenic differentiation and early anti-infiammatory and antibacterial properties. Together, this novel design on titanium provides a promising therapeutic for dental implants.

18.
Cell Prolif ; 54(8): e13093, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231932

RESUMO

OBJECTIVES: The study aimed to determine whether dental pulp stem cell-derived exosomes (DPSC-Exos) exert protective effects against cerebral ischaemia-reperfusion (I/R) injury and explore its underlying mechanism. MATERIALS AND METHODS: Exosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC-Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen-glucose deprivation-reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC-Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF-κB p65, HMGB1, IL-6, IL-1ß and TNF-α were determined by western blot or enzyme-linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining. RESULTS: DPSC-Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC-Exos inhibited the I/R-mediated expression of TLR4, MyD88 and NF-κB significantly. DPSC-Exos also reduced the protein expression of IL-6, IL-1ß and TNF-α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC-Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage. CONCLUSIONS: DPSC-Exos can ameliorate I/R-induced cerebral injury in mice. Its anti-inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF-κB pathway.


Assuntos
Citocinas/metabolismo , Exossomos/transplante , Traumatismo por Reperfusão/terapia , Animais , Sobrevivência Celular , Citoplasma/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Inflamação/terapia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
19.
Bioact Mater ; 6(3): 638-654, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33005828

RESUMO

Due to the limitations in autogenous nerve grafting or Schwann cell transplantation, large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit. Cell based therapies provide a novel treatment for peripheral nerve injuries. In this study, we first experimented an optimal scaffold material synthesis protocol, from where we selected the 10% GFD formula (10% GelMA hydrogel, recombinant human basic fibroblast growth factor and dental pulp stem cells (DPSCs)) to fill a cellulose/soy protein isolate composite membrane (CSM) tube to construct a third generation of nerve regeneration conduit, CSM-GFD. Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model. After 12 week post implant surgery, at histologic level, we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers. At physical level, CSM-GFD achieved functional recovery assessed by a sciatic functional index study. In both levels, CSM-GFD performed like what gold standard, the nerve autograft, could do. Further, we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD. In conclusion, we claimed that this third-generation nerve regeneration conduit, CSM-GFD, could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries.

20.
Front Cell Dev Biol ; 8: 625151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344464

RESUMO

Transplantation of undifferentiated dental pulp stem cells (DPSCs) may suffer from tumorigenesis. Neuronal differentiated DPSCs (d-DPSCs) have emerged as an ideal source to treat central nervous system (CNS) disorders. Moreover, different components of culture medium functioned on the characteristics of d-DPSCs in vitro. In this study, d-DPSCs were cultured in three types of medium: Neurobasal®®-A medium supplemented with 2% B27 (the 2% B27 NM group), Neurobasal® -A medium supplemented with 2% B27 and 5% FBS (the 2% B27 + 5% FBS NM group), and α-MEM containing 10% FBS (the 10% FBS α-MEM group). We found that d-DPSCs in the 2% B27 + 5% FBS NM group had lower proliferation and reduced expression of transient receptor potential canonical 1 (TRPC1) and CD146, whereas up-regulated Nestin and microtubule-associated protein-2 (MAP-2). Notably, d-DPSCs in the 10% FBS α-MEM group possessed high proliferative capacity, decreased expression of neuron-like markers and partially restored stemness. It was demonstrated that d-DPSCs cultured in the 2% B27 + 5% FBS NM could maintain their neuron-like characteristics. Besides, d-DPSCs cultivated in the 10% FBS α-MEM could partially recover their stem cells properties, indicating that neural differentiation of DPSCs was reversible and could open novel avenues for exploring the pluripotency of DPSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA