Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(4): 2350-2362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156432

RESUMO

The widespread presence of microplastics (MPs) in the environment poses a significant threat to biological survival and human health. However, our understanding of the toxic effects of MPs on the kidneys remains limited. This study aimed to investigate the underlying mechanism of the toxic effects of MPs on the kidneys using an ischemia-reperfusion (IR) mouse model. Four-week-old ICR mice were exposed to 0.5 µm MPs for 12 weeks prior to IR injury. The results showed that MPs exposure could aggravate the IR-induced damage to renal tubules and glomeruli. Although there were no significant changes in blood urea nitrogen and serum creatinine levels 7 days after IR, MPs treatment resulted in a slight increase in both parameters. In addition, the expression levels of inflammatory factors (MCP-1 and IL-6) at the mRNA level, as well as macrophage markers (CD68 and F4/80), were significantly higher in the MPs + IR group than in the Sham group after IR. Furthermore, MPs exposure exacerbated IR-induced renal fibrosis. Importantly, the expression of pyroptosis-related genes, including NLRP3, ASC, GSDMD, cleaved caspase-1, and IL-18, was significantly upregulated by MPs, indicating that MPs exacerbate pyroptosis in the context of renal IR. In conclusion, our findings suggest that MPs exposure can aggravate renal IR-induced pyroptosis by activating NLRP3-GSDMD signaling.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microplásticos , Plásticos/metabolismo , Camundongos Endogâmicos ICR , Rim/metabolismo , Traumatismo por Reperfusão/genética
2.
Environ Toxicol ; 39(2): 1018-1030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064261

RESUMO

In recent years, microplastics (MPs) have gained significant attention as a persistent environmental pollutant resulting from the decomposition of plastics, leading to their accumulation in the human body. The liver, particularly of individuals with type 2 diabetes mellitus (T2DM), is known to be more susceptible to the adverse effects of environmental pollutants. Therefore, to investigate the potential impact of MPs on the liver of diabetic mice and elucidate the underlying toxicological mechanisms, we exposed db/db mice to 0.5 µm MPs for 3 months. Our results revealed that MPs exposure resulted in several harmful effects, including decreased body weight, disruption of liver structure and function, elevated blood glucose levels, impaired glucose tolerance, and increased glycogen accumulation in the hepatic tissue of the mice. Furthermore, MPs exposure was found to promote hepatic gluconeogenesis by perturbing the PP2A/AMPK/HNF4A signaling pathway. In addition, MPs disrupt redox balance, leading to oxidative damage in the liver. This exposure also disrupted hepatic lipid metabolism, stimulating lipid synthesis while inhibiting catabolism, ultimately resulting in the development of fatty liver. Moreover, MPs were found to induce liver fibrosis by activating the Wnt/ß-catenin signaling pathway. Furthermore, MPs influenced adaptive thermogenesis in brown fat by modulating the expression of uncoupling protein 1 (UCP1) and genes associated with mitochondrial oxidative respiration thermogenesis in brown fat. In conclusion, our study demonstrates that MPs induce oxidative damage in the liver, disturb glucose and lipid metabolism, promote hepatic fibrosis, and influence adaptive thermogenesis in brown fat in diabetic mice. These findings underscore the potential adverse effects of MPs on liver health in individuals with T2DM and highlight the importance of further research in this area.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Microplásticos , Plásticos/metabolismo , Plásticos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Via de Sinalização Wnt , Diabetes Mellitus Experimental/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Fibrose , Fígado , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo
3.
Ecotoxicol Environ Saf ; 256: 114821, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989554

RESUMO

Microplastics (MPs) may pollute drinking water, accumulate in the food chain, and release toxic chemicals that may cause a variety of diseases. The detrimental effects of MPs on kidney injury and fibrosis under long-term accumulation have not been fully documented. In this study, mice were exposed to MPs with three different diameters (80 nm, 0.5 µm, and 5 µm) to investigate the detrimental influences of MPs on the kidney. The results showed that MPs of different diameters caused varying degrees of injury to the murine kidney. MPs exposure can induce an inflammatory response, oxidative stress, and cell apoptosis in the kidney and induce kidney injury, which ultimately promotes kidney fibrosis. Furthermore, transcriptome data revealed that chronic exposure to MPs could alter the expressions of multiple genes related to immune response (80 nm) and circadian rhythm (0.5 µm, and 5 µm). Overall, our data provide new evidence and potential research for investigating the harm of MPs to kidney of mammals and even humans.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Camundongos , RNA-Seq , Rim , Apoptose , Poliestirenos , Mamíferos
4.
Ecotoxicol Environ Saf ; 267: 115618, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939553

RESUMO

Nanoplastics (NPs) and Microplastics (MPs) pollution has become a severe threat to the planet and is a growing concern. However, their effects on male reproductive toxicity remain poorly understood. In this study, a series of morphological analyses were completed to explore the influence of NPs and MPs exposure on the testis in mice. After 12-weeks exposure, although both NPs and MPs exposure can lead to reproductive toxicity, compared with NPs exposure, exposure to MPs leads to a more significant increase in reproductive toxicity dependent on some particle size. Moreover, increased reproductive toxicities, including increased spermatogenesis disorders, and sperm physiological abnormality, oxidative stress, testis inflammation was more associated with MPs group than NPs group. Ultra-pathological structure observed by transmission electron microscopy indicated that both NPs and MPs have different effects on spermatogonia, spermatocytes and Sertoli cells. Exposure to MPs resulted in decreased Sertoli cell numbers and reduced Leydig cell area, and showed no effects on differentiation of Leydig cells by the expression level of the Insulin-Like factor 3 (INSL3) in Leydig cells. Transcriptomic sequencing analysis provided valuable insights into the differential effects of NPs and MPs on cellular processes. Specifically, our findings demonstrated that NPs were predominantly involved in the regulation of steroid biosynthesis, whereas MPs primarily influenced amino acid metabolism. This study demonstrates the effect of adult-stage reproductive toxicity in mice after exposure to NPs and MPs, which will deep the understanding of the NPs and MPs induced toxicity.


Assuntos
Microplásticos , Testículo , Masculino , Animais , Camundongos , Microplásticos/toxicidade , Plásticos , Sêmen , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA