Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Pharm ; 20(11): 5668-5681, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37856874

RESUMO

Despite significant progress in vaccine development, especially in the fight against viral infections, many unexplored areas remain including innovative adjuvants, diversification of vaccine formulations, and research into the coordination of humoral and cellular immune mechanisms induced by vaccines. Effective coordination of humoral and cellular immunity is crucial in vaccine design. In this study, we used the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or ovalbumin (OVA) as antigen models and CpG DNA (an activator of toll-like receptor 9, TLR9) as an adjuvant to prepare a multitargeted liposome (LIPO) vaccine. Once equipped with the ability to target lymph nodes (LN) and the endoplasmic reticulum (ER), the LIPO vaccine significantly enhances the cross-presentation ability of antigen-presenting cells (APCs) for exogenous antigens through the ER-associated protein degradation (ERSD) mechanism. Additionally, the vaccine could fine-tune the efficiency of ER-targeted antigen delivery, actively regulating the presentation of exogenous antigen proteins via the major histocompatibility complex (MHC-I) or MHC-II pathways. Immune data from in vivo mouse experiments indicated that the LIPO vaccine effectively stimulated both humoral and cellular immune responses. Furthermore, it triggers immune protection by establishing a robust and persistent germinal center. Moreover, the multifunctionality of this LIPO vaccine extends to the fields of cancer, viruses, and bacteria, providing insights for skilled vaccine design and improvement.


Assuntos
Imunidade Humoral , Vacinas , Animais , Camundongos , Lipossomos/farmacologia , Antígenos , Imunidade Celular , Adjuvantes Imunológicos
2.
BMC Emerg Med ; 23(1): 44, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098503

RESUMO

BACKGROUND: Medical device-related pressure injuries(MDRPI) are prevalent and attracting more attention. During ambulance transfer, the shear force caused by braking and acceleration; extensive medical equipment crowed in a narrow space add external risk factors for MDRPIs. However, there is insufficient research on the relationship between MDRPIs and ambulance transfers. This study aims to clarify the prevalence and characteristics of MDRPI during ambulance transfer. METHOD: A descriptive observational study was conducted with convenience sampling. Before starting the study, six PI specialist nurses certified by the Chinese Nursing Association trained emergency department nurses for three MDRPI and Braden Scale sessions, one hour for each session. Data and images of PIs and MDRPIs are uploaded via the OA system by emergency department nurses and reviewed by these six specialist nurses. The information collection begins on 1 July 2022 and ends on 1 August 2022. Demographic and clinical characteristics and a list of medical devices were collected by emergency nurses using a screening form developed by researchers. RESULTS: One hundred one referrals were eventually included. The mean age of participants was (58.3 ± 11.69) years, predominantly male (67.32%, n = 68), with a mean BMI of 22.48 ± 2.2. The mean referral time among participants was 2.26 ± 0.26 h, the mean BRADEN score was 15.32 ± 2.06, 53.46% (n = 54) of participants were conscious, 73.26% (n = 74) were in the supine position, 23.76% (n = 24) were in the semi-recumbent position, and only 3 (2.9%) were in the lateral position. Eight participants presented with MDRPIs, and all MDRPIs are stage 1. Patients with spinal injuries are most prone to MDRPIs (n = 6). The jaw is the area most prone to MDRPIs, caused by the cervical collar (40%, n = 4), followed by the heel (30%, n = 3) and nose bridge (20%, n = 2) caused by the respiratory devices and spinal board. CONCLUSION: MDRPIs are more prevalent during long ambulance referrals than in some inpatient settings. The characteristics and related high-risk devices are also different. The prevention of MDRPIs during ambulance referrals deserves more research.


Assuntos
Ambulâncias , Úlcera por Pressão , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Úlcera por Pressão/epidemiologia , Úlcera por Pressão/etiologia , Úlcera por Pressão/prevenção & controle , Pacientes Internados , Prevalência , Encaminhamento e Consulta
3.
J Nanobiotechnology ; 19(1): 427, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922537

RESUMO

BACKGROUND: Gene therapy shows great promise for a broad array of diseases. However, we found that hypoxic tumor microenvironment (TME) exerted significant inhibitory effects on transfection efficiency of a variety of gene vectors (such as Lipo 2000 and PEI) in an oxygen-dependent manner. Solid tumors inevitably resulted in acute hypoxic areas due to the rapid proliferation of tumor cells and the aberrant structure of blood vessels. Thus, the hypoxic TME severely limited the efficiency and application of gene therapy. METHODS: In our previous study, we constructed endoplasmic reticulum-targeted cationic liposomes, PAR-Lipo, which could effectively deliver genes and ensure high transfection efficiency under normoxia. Unsatisfactorily, the transfection efficiency of PAR-Lipo was rather poor under hypoxia. We believed that reoxygenation was the most direct and effective means to rescue the low transfection under hypoxia. Hence, we fabricated liposomes modified with perfluorooctyl bromide (PFOB@Lipo) to load oxygen and deliver it to tumor sites, which effectively alleviated the hypoxic nature of tumor. Then PAR-Lipo were applied to mediate high-efficiency delivery of tumor suppressor gene pTP53 to inhibit tumor progression. RESULTS: The results showed that such staged strategy augmented the expression of P53 protein in tumors and extremely suppressed tumor growth. CONCLUSION: This work was the first attempt to utilize an oxygen nanocarrier to assist the therapeutic effect of gene therapy under hypoxia, providing a new reference for gene therapy in malignant tumors. GRAPHICAL ABSTARCT.


Assuntos
Terapia Genética/métodos , Lipossomos/química , Nanoestruturas/química , Oxigênio/química , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Fluorocarbonos/química , Proteínas de Fluorescência Verde/genética , Humanos , Hidrocarbonetos Bromados/química , Lipossomos/farmacologia , Camundongos , Camundongos Nus , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
4.
J Nanosci Nanotechnol ; 15(7): 4792-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373039

RESUMO

A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Receptores de Folato com Âncoras de GPI/agonistas , Ácido Láctico/química , Lecitinas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Ácido Poliglicólico/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
World Neurosurg ; 185: e357-e366, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38342173

RESUMO

OBJECTIVE: To establish a porcine osteoporotic vertebral compression fracture model and compare the impact of unilateral vertebroplasty using trajectory-adjustable bone cement filling device to traditional surgical tools on vertebral biomechanics. METHODS: Twenty-four fresh adult porcine vertebrae were used to establish an osteoporotic vertebral compression fracture model. The specimens were divided into 4 groups (A, B, C, and D), each consisting of 6 vertebrae. Group A served as the control group without vertebral augmentation (percutaneous vertebroplasty [PVP]). Patients in Group B underwent unilateral PVP using conventional surgical tools, while patients in Group C underwent bilateral PVP using the same tools. In Group D, patients underwent unilateral PVP with a trajectory-adjustable bone cement filling device. Postoperative X-ray examinations were performed to assess cement distribution and leakage. The compressive stiffness and strength of each spinal unit were evaluated using an electronic mechanical testing machine. RESULTS: In Groups B, C, and D, the percentages of total cement distribution area were 32.83 ± 3.64%, 45.73 ± 2.27%, and 47.43 ± 3.51%, respectively. The values were significantly greater in Groups C and D than in Group B (P < 0.05), but there was no significant difference between Groups C and D (P > 0.05). The stiffness after vertebral augmentation in Groups B, C, and D was 1.04 ± 0.23 kN/mm, 1.11 ± 0.16 KN/mm, and 1.15 ± 0.13 KN/mm, respectively, which were significantly greater than that in Group A (0.46 ± 0.06 kN/mm; P < 0.05). The ultimate compressive strengths in Groups B, C, and D were 2.53 ± 0.21 MPa, 4.09 ± 0.30 MPa, and 3.99 ± 0.29 MPa, respectively, all surpassing Group A's strength of 1.41 ± 0.31 MPa. Additionally, both Groups C and D demonstrated significantly greater ultimate compressive strengths than Group B did (P < 0.05). CONCLUSIONS: A trajectory-adjustable bone cement filling device was proven to be an effective approach for unilateral vertebroplasty, restoring the biomechanical properties of fractured vertebrae. Compared to traditional surgical tools, this approach is superior to unilateral puncture and yields outcomes comparable to those of bilateral puncture. Additionally, the device ensures a centrally symmetrical distribution pattern of bone cement, leading to improved morphology.


Assuntos
Cimentos Ósseos , Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Animais , Fraturas por Compressão/cirurgia , Suínos , Fenômenos Biomecânicos/fisiologia , Vertebroplastia/métodos , Fraturas por Osteoporose/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Modelos Animais de Doenças , Humanos , Feminino , Masculino
6.
Nat Nanotechnol ; 18(6): 647-656, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081080

RESUMO

Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow-blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow-blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.


Assuntos
Nanopartículas , Osteoporose , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neutrófilos , Ácido Láctico/uso terapêutico , Ácido Poliglicólico/uso terapêutico , Medula Óssea , Osteoporose/tratamento farmacológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-35441489

RESUMO

Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Assuntos
Nanopartículas , Retículo Endoplasmático/metabolismo , Lipossomos , Mitocôndrias/metabolismo , Nanopartículas/química
8.
ACS Nano ; 16(6): 9240-9253, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713245

RESUMO

A therapeutic tumor vaccine is a promising approach to cancer treatment. One of its strategies is to treat patient-derived tumor cells in vitro and then administer them in vivo to induce an adaptive immune response and achieve cancer treatment. Here, we want to explore the possibility of converting cancer tissue into a therapeutic tumor vaccine through induced immunogenic cell death (ICD) in situ. We loaded indocyanine green (ICG) into liposomes (ICG-Lipo) and modified it with the pardaxin peptide to realize an endoplasmic reticulum (ER)-targeting function (Par-ICG-Lipo). A microfluidic technique was developed for loading ICG, a water-soluble molecule, into liposomes with a high encapsulation efficiency (greater than 90%). Under near-infrared (NIR) irradiation, ER-targeting photodynamic therapy (PDT) induced by Par-ICG-Lipo could promote the release of danger-signaling molecules (DAMPs) and tumor antigens (TAAs) in vivo, which significantly enhanced the immunogenicity in vivo and thus stimulates a strong antitumor immune response. This process would be further amplified by adopting dendritic cells. In general, our strategy transformed in situ tumor cells into therapeutic vaccines by ER-targeting PDT, which could provide a clinically applicable and effective approach for cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Vacinas Anticâncer/uso terapêutico , Lipossomos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Neoplasias/terapia , Retículo Endoplasmático , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
9.
J Control Release ; 341: 769-781, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952044

RESUMO

As a research hotspot, immune checkpoint inhibitors (ICIs) is often combined with other therapeutics in order to exert better clinical efficacy. To date, extensive laboratory and clinical investigations into the combination of ICIs and chemotherapy have been carried out, demonstrating augmented effectiveness and broad application prospects in anti-tumor therapy. However, the administration of these two treatment modalities is usually randomized or fixed to a given chronological order. Nevertheless, the pharmacological effect of drug is closely related to its exposure behavior in vivo, which may consequently affect the synergistic outcomes of a combined therapy. In this study, we prepared a lipid nanoparticle encapsulating docetaxel (DTX-VNS), and associated it with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) for the treatment of malignant tumors. To identify the optimum timing and sequencing for chemotherapy and immunotherapy, we designed three administration regimes, including the simultaneous delivery of DTX-VNS and αPD-1(DTX-VNS@αPD-1), DTX-VNS delivery before (DTX-VNS plus αPD-1) or post (αPD-1 plus DTX-VNS) PD-1 blockade with an interval of two days. Analysis from mass spectrometry, multi-factor detection and other techniques indicated that DTX-VNS plus αPD-1 initiated a powerful anti-tumor response in multiple tumor models, contributing to a remarkably reshaped tumor microenvironment landscape, which may attribute to the maximum therapeutic additive effects arise from a concomitant exposure of DTX-VNS and αPD-1 at the tumor site. By profiling the exposure kinetics of nanoparticles and αPD-1 in vivo, we defined the administration schedule with utmost therapeutic benefits, which may provide a valuable clinical reference for the rational administration of immunochemotherapy.


Assuntos
Imunoterapia , Nanopartículas , Linhagem Celular Tumoral , Lipossomos , Nanopartículas/química
10.
Nanoscale ; 12(35): 18249-18262, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32857088

RESUMO

Gene therapy mediated by non-viral carriers is gaining an increasing popularity due to its high biosafety and the convenience of production on a large scale, yet inefficient gene delivery is a limiting obstacle. Few gene vectors can avoid the endosome-lysosome route, and as a result, their DNA payloads are easily decomposed during transfection. Herein, a peptide (pardaxin, PAR)-modified cationic liposome (PAR-Lipo) targeting the endoplasmic reticulum (ER) was developed for improving the gene delivery efficiency. Interestingly, compared to non-PAR-modified cationic liposomes (Non-Lipos) and Lipofectamine 2000 (Lipo 2000, a commercial genetic vector), PAR-Lipos showed remarkably higher gene delivery efficiency in vitro and better antitumor efficacy in vivo. It was demonstrated that PAR-Lipos could be accumulated into the ER via a non-lysosome intracellular route after cellular internalization, which induced the retention of the DNA payload in the ER close to the nucleus, while Non-Lipos, like most conventional cationic carriers, mainly presented lysosomal retention after their endocytosis. The unique intracellular transport behavior of PAR-Lipos can enhance the protection of the DNA payload, prolong their residence time in the cell, and promote their entry into the nucleus relying on the intimate relationship between the ER and nuclear membrane, which is the explanation for the enhanced gene-therapy effect mediated by PAR-Lipos. Our research may provide alternative means of efficiently delivering genes in cells.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , DNA/genética , Retículo Endoplasmático , Lipossomos , Transfecção
11.
ACS Appl Mater Interfaces ; 11(50): 46536-46547, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31751119

RESUMO

Local hypoxia in solid malignancies often results in resistance to radiotherapy (RT) and chemotherapy (CT), which may be one of the main reasons for their failure in clinical application. Especially, oxygen is an essential element for enhancing DNA damage caused by ionizing radiation in radiotherapy. Here, two biomimetic oxygen delivery systems were designed by encapsulating hemoglobin (Hb) alone into a liposome (Hb-Lipo) or co-encapsulating Hb and doxorubicin (DOX) into a liposome (DOX-Hb-Lipo). Our data indicated that both Hb-Lipo and DOX-Hb-Lipo could effectively alleviate hypoxia in tumors. We demonstrated that RT plus tumor-targeting delivery of oxygen mediated by Hb-Lipo could significantly overcome the tolerance of hypoxic cancer cells to RT, showing significantly enhanced cancer-cell killing and tumor growth inhibition ability, mainly attributing to hypoxia alleviation and increased reactive oxygen species production under RT in cancer cells. Furthermore, a melanoma model that was quite insensitive to both RT and CT was used to test the efficacy of chemoradiotherapy combined with hypoxia alleviation. RT plus Hb-Lipo only caused a limited increase in antitumor activity. However, extremely strong tumor inhibition could be obtained by RT combined with DOX-Hb-Lipo-mediated CT, attributed to radio-triggered DOX release and enhanced immunogenic cell death induced by RT under an oxygen supplement. Our study provided a valuable reference for overcoming hypoxia-induced radioresistance and a useful therapeutic strategy for cancers that are extremely insensitive to chemo- or radiotherapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Sistemas de Liberação de Medicamentos , Oxigênio/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Neoplasias da Mama/patologia , Quimiorradioterapia/métodos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/efeitos da radiação , Feminino , Hemoglobinas/química , Hemoglobinas/farmacologia , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/efeitos da radiação , Lipossomos/química , Lipossomos/farmacologia , Células MCF-7 , Oxigênio/química , Radiação Ionizante , Espécies Reativas de Oxigênio/química , Hipóxia Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Nano ; 12(8): 7647-7662, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30020768

RESUMO

A convenient and feasible therapeutic strategy for malignant and metastatic tumors was constructed here by combining photothermal ablation (PTA)-based laser immunotherapy with perdurable PD-1 blockade immunotherapy. Hollow gold nanoshells (HAuNS, a photothermal agent) and AUNP12 (an anti PD-1 peptide, APP) were co-encapsulated into poly(lactic- co-glycolic) acid (PLGA) nanoparticles. Unlike monoclonal PD-1/PD-L1 antibodies, PD-1 peptide inhibitor shows lower cost and immunotoxicity but needs frequent administration due to its rapid clearance in vivo. Our data here showed that the formed HAuNS- and APP-loaded PLGA nanoparticles (AA@PN) could maintain release periods of up to 40 days for the peptide, and a single intratumoral injection of AA@PN could replace the frequent administration of free APP. After the administration of AA@PN and irradiation with a near-infrared laser at the tumor site, an excellent killing effect on the primary tumor cells was achieved by the PTA. The nanoparticles also played a vaccine-like role under the adjuvant of cytosine-phospho-guanine (CpG) oligodeoxynucleotide and generated a localized antitumor-immune response. Furthermore, sustained APP release with laser-dependent transient triggering could induce the blockage of PD-1/PD-L1 pathway to activate T cells, thus subsequently generating a systemic immune response. Our data demonstrated that the PTA combined with perdurable PD-1 blocking could efficiently eradicate the primary tumors and inhibit the growth of metastatic tumors as well as their formation. The present study provides a promising therapeutic strategy for the treatment of advanced cancer with metastasis and presents a valuable reference for obtaining better outcomes in clinical cancer immunotherapy.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia , Lasers , Fototerapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptor de Morte Celular Programada 1/imunologia , Propriedades de Superfície , Células Tumorais Cultivadas
13.
Biomaterials ; 182: 145-156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121013

RESUMO

Chemotherapy has become a critical treatment for many cancer types. However, its efficacy is hindered by chemoresistance and limited drug accumulation induced by the hypoxic tumor environment. Therefore, there is an urgent need for useful strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we report the development of a multifunctional liposome simultaneously loading an oxygen carrier (hemoglobin, Hb) and an anti-tumor drug (doxorubicin, DOX) to enhance chemotherapeutic effects against hypoxic tumors. The liposomes, DOX-Hb-lipo (DHL), showed efficient loading of oxygen and site-specific oxygen delivery into tumors, inducing the reversal of tumor hypoxia. Furthermore, the O2 interference capacity increased the uptake of the drug into hypoxic cancer cells, inducing a remarkably increased toxicity of the drug against cancer cells. Interestingly, the obtained DHL showed a significantly enhanced internalization into cancer cells and accumulation in tumors compared to DL (DOX loaded liposomes without Hb), while the enhanced effect did not occur in normal cells. The specific delivery of DHL into cancer cells should be attributed to the mediation of Hb on the surface of the liposomes. In addition, DHL considerably increased reactive oxygen species (ROS) production in a hypoxic environment and promoted the ROS-mediated cytotoxicity of DOX. Based on the elevated drug accumulation in the tumor sites, increased internalization into cancer cells and enhanced oxygen levels in tumor regions, DHL reversed hypoxia-induced chemoresistance and exhibited stronger antitumor effects. Thus, DHL might be a promising alternative strategy for cancer treatment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Hemoglobinas/administração & dosagem , Neoplasias/tratamento farmacológico , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Hemoglobinas/farmacocinética , Hemoglobinas/uso terapêutico , Humanos , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
Sci Rep ; 5: 14258, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26400780

RESUMO

Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Liberação Controlada de Fármacos , Luz , Nanomedicina Teranóstica/métodos , Tocoferóis , Animais , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Endossomos/metabolismo , Feminino , Humanos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Células MCF-7 , Imagem Molecular , Polietilenoglicóis/administração & dosagem , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biomaterials ; 35(23): 6037-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24776486

RESUMO

A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect.


Assuntos
Verde de Indocianina/administração & dosagem , Verde de Indocianina/farmacocinética , Lipídeos/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Neoplasias Pancreáticas/terapia , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Difusão , Feminino , Verde de Indocianina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/ultraestrutura , Neoplasias Pancreáticas/patologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Polímeros/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA