Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 136: 109587, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846615

RESUMO

Vitamin C (VC) and ß-Carotene (ßC) were selected to produce co-encapsulated liposomes using hydrophilic and hydrophobic cavities simultaneously by ethanol injection method. The results of liposomal structure characterized by particle size, polydispersity index, zeta-potential and transmission electron microscope showed that the microstructure of all liposomal samples was spherical without adhesion or break and the size of VC-ßC-loaded liposome (L-VC-ßC) was bigger than VC-loaded liposome (L-VC) or ßC-loaded liposome (L-ßC). The encapsulation efficiency (EE) of VC in L-VC-ßC was significantly higher than that in L-VC, and the EE of ßC in L-VC-ßC had no significant change compared with that in L-ßC. The free radical scavenging rate of L-VC-ßC was significantly higher than that of L-ßC, while it had no significant change compared with that of L-VC. In addition, the storage stability of ßC in L-VC-ßC improved greatly compared with that in L-ßC. Furthermore, the zero order model was applied to understand the release kinetics of ßC from L-ßC and L-VC-ßC in the stomach, whereas the Korsmeyr-Peppas model was chosen to describe the release of ßC from two types of liposome in small intestine and their release mechanisms were mainly dominated by Fickian diffusion. It was significant to provide a new idea for using hydrophilic and hydrophobic cavities simultaneously in liposomes to design the multicomponent nutrient delivery system.


Assuntos
Antioxidantes , Lipossomos , Ácido Ascórbico , Digestão , Estabilidade de Medicamentos , beta Caroteno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA