Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487096

RESUMO

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 302-310, 2023 Feb 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36999478

RESUMO

Palatal radicular groove is a developmental malformation of maxillary incisors, lateral incisors in particular, which often causes periodontal destruction. This paper reports a case of combined periodontal-endodontic lesions induced by palatal radicular groove, which was initially misdiagnosed as a simple periapical cyst. After root canal therapy and periapical cyst curettage, the course of disease was prolonged, resulting in the absence of buccal and maxillary bone plates in the affected tooth area. After the etiology was determined, the affected tooth was extracted and guide bone tissue regeneration was performed at the same time, followed by implantation and restoration at the later stage, leading to clinical cure. The palatal radicular groove is highly occult, and the clinical symptoms are not typical. If the abscess of the maxillary lateral incisor occurs repeatedly, and the abscess of the maxillary lateral incisor has not been cured after periodontal and root canal treatment, cone-beam computed tomographic and periodontal flap surgery should be considered.


Assuntos
Cistos , Cisto Radicular , Humanos , Incisivo , Abscesso , Raiz Dentária/cirurgia , Raiz Dentária/anormalidades , Tratamento do Canal Radicular , Maxila
3.
Chemosphere ; 226: 545-552, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30953899

RESUMO

Bisphenol A (BPA), a plastic additive, is ubiquitous in the environment and has endocrine disrupting effects. As many countries have prohibited the manufacture and sale of plastic products with BPA, BPA analogs have been used to replace BPA during production, including bisphenol S (BPS) and bisphenol B (BPB). To investigate the toxicities of BPA and its analogs on neurons, reactive oxygen species (ROS) assay, Annexin V-FITC (fluorescein) apoptosis detection assay, lactate dehydrogenase (LDH) cytotoxicity assay, and Cell Counting Kit-8 assay were conducted to comprehensively assess the influence of different concentrations of BPA, BPB, and BPS on ROS, apoptosis, damage, and proliferation for hippocampal HT-22 cells, respectively. Results showed that 6 h of exposure to bisphenols (BPs) could increase the ROS levels, 24 h and 48 h of exposure could induce higher apoptosis and LDH leakage rates for HT-22 cells, and 7 d of exposure could inhibit the cell proliferations. In addition, non-monotonic dose-response relationships were observed between the concentrations of bisphenols and the toxic effects mentioned above. The neurotoxic effects of BPA, BPB and BPS on HT-22 cells were in the increasing order of BPS, BPA, and BPB. In conclusion, these results showed that exposure to BPA and its analogs may result in adverse effects on hippocampal neuronal cell lines. BPS is a surrogate with lower neurotoxicity to replace BPA in production of plastic utensils.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Hipocampo/patologia , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Camundongos , Plásticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA